In this paper we consider a discrete-time risk model, which allows the premium to be adjusted according to claims experience. This model is inspired by the well-known bonus-malus system in the non-life insurance industry. Two strategies of adjusting periodic premiums are considered: aggregate claims or claim frequency. Recursive formulae are derived to compute the finite-time ruin probabilities, and Lundberg-type upper bounds are also derived to evaluate the ultimate-time ruin probabilities. In addition, we extend the risk model by considering an external Markovian environment in which the claims distributions are governed by an external Markov process so that the periodic premium adjustments vary when the external environment state changes. We then study the joint distribution of premium level and environment state at ruin given ruin occurs. Two numerical examples are provided at the end of this paper to illustrate the impact of the initial external environment state, the initial premium level and the initial surplus on the ruin probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.