BACKGROUND
Recent advances have enabled noninvasive mapping of cardiac arrhythmias with electrocardiographic imaging and noninvasive delivery of precise ablative radiation with stereotactic body radiation therapy (SBRT). We combined these techniques to perform catheter-free, electrophysiology-guided, noninvasive cardiac radioablation for ventricular tachycardia.
METHODS
We targeted arrhythmogenic scar regions by combining anatomical imaging with noninvasive electrocardiographic imaging during ventricular tachycardia that was induced by means of an implantable cardioverter–defibrillator (ICD). SBRT simulation, planning, and treatments were performed with the use of standard techniques. Patients were treated with a single fraction of 25 Gy while awake. Efficacy was assessed by counting episodes of ventricular tachycardia, as recorded by ICDs. Safety was assessed by means of serial cardiac and thoracic imaging.
RESULTS
From April through November 2015, five patients with high-risk, refractory ventricular tachycardia underwent treatment. The mean noninvasive ablation time was 14 minutes (range, 11 to 18). During the 3 months before treatment, the patients had a combined history of 6577 episodes of ventricular tachycardia. During a 6-week postablation “blanking period” (when arrhythmias may occur owing to postablation inflammation), there were 680 episodes of ventricular tachycardia. After the 6-week blanking period, there were 4 episodes of ventricular tachycardia over the next 46 patient-months, for a reduction from baseline of 99.9%. A reduction in episodes of ventricular tachycardia occurred in all five patients. The mean left ventricular ejection fraction did not decrease with treatment. At 3 months, adjacent lung showed opacities consistent with mild inflammatory changes, which had resolved by 1 year.
CONCLUSIONS
In five patients with refractory ventricular tachycardia, noninvasive treatment with electrophysiology-guided cardiac radioablation markedly reduced the burden of ventricular tachycardia. (Funded by Barnes–Jewish Hospital Foundation and others.)
BACKGROUND-Case studies have suggested the efficacy of catheter-free, electrophysiologyguided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy (SBRT), though prospective data is lacking.
METHODS-We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electrical cardiac imaging with a standard SBRT workflow followed by delivery of a single fraction of 25 Gray (Gy) to the target. The primary safety endpoint was treatment-related serious adverse events (SAE) in the first 90 days. The primary efficacy endpoint was any reduction in VT episodes (tracked by indwelling ICDs) or any reduction in PVC burden
We report that tumor necrosis factor alpha (TNF-alpha) mRNA is increased after treatment with x-rays in certain human sarcoma cells. An increase in TNF-alpha mRNA is accompanied by the increased production of TNF-alpha protein. TNF-alpha enhances radiation lethality in both TNF-alpha-producing and -nonproducing tumor cells. These data suggest that, in addition to the direct cytotoxic effects of x-rays, production of TNF-alpha may add to radiation lethality through autocrine and paracrine mechanisms. Combinations of TNF-alpha and therapeutic radiation may be useful in clinical cancer therapy.
Activation of transcription of the Egr-1 gene by X-rays is regulated by the promoter region of this gene. We linked the radiation-inducible promoter region of the Egr-1 gene to the gene encoding the radiosensitizing and tumoricidal cytokine, tumour necrosis factor-alpha (TNF-alpha) and used a replication-deficient adenovirus to deliver the Egr-TNF construct to human tumours growing in nude mice. Combined treatment with Ad5.Egr-TNF and 5,000 cGy (rad) resulted in increased intratumoral TNF-alpha production and increased tumour control compared with treatment with Ad5.Egr-TNF alone or with radiation alone. The increase in tumour control was achieved without an increase in normal tissue damage when compared to tissue injury from radiation alone. Control of gene transcription by ionizing radiation in vivo represents a novel method of spatial and temporal regulation of gene-based medical treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.