Mutations in DOCK8 result in autosomal recessive Hyper-IgE syndrome with combined immunodeficiency (CID). However, the natural course of disease, long-term prognosis, and optimal therapeutic management have not yet been clearly defined. In an international retrospective survey of patients with DOCK8 mutations, focused on clinical presentation and therapeutic measures, a total of 136 patients with a median follow-up of 11.3 years (1.3-47.7) spanning 1693 patient years, were enrolled. Eczema, recurrent respiratory tract infections, allergies, abscesses, viral infections and mucocutaneous candidiasis were the most frequent clinical manifestations. Overall survival probability in this cohort [censored for hematopoietic stem cell transplantation (HSCT)] was 87 % at 10, 47 % at 20, and 33 % at 30 years of age, respectively. Event free survival was 44, 18 and 4 % at the same time points if events were defined as death, life-threatening infections, malignancy or cerebral complications such as CNS vasculitis or stroke. Malignancy was diagnosed in 23/136 (17 %) patients (11 hematological and 9 epithelial cancers, 5 other malignancies) at a median age of 12 years. Eight of these patients died from cancer. Severe, life-threatening infections were observed in 79/136 (58 %); severe non-infectious cerebral events occurred in 14/136 (10 %). Therapeutic measures included antiviral and antibacterial prophylaxis, immunoglobulin replacement and HSCT. This study provides a comprehensive evaluation of the clinical phenotype of DOCK8 deficiency in the largest cohort reported so far and demonstrates the severity of the disease with relatively poor prognosis. Early HSCT should be strongly considered as a potential curative measure.
Objective.Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive autoinflammatory disorder associated with ADA2 mutations. We aimed to investigate the characteristics and ADA2 enzyme activities of patients with DADA2 compared to non-DADA2 patients.Methods.This is a descriptive study of 24 patients with DADA2 who were admitted to the Adult and Pediatric Rheumatology, Pediatric Haematology, and Pediatric Immunology Departments of Hacettepe University. All ADA2 exons were screened by Sanger sequencing. Serum ADA2 enzyme activity was measured by modified spectrophotometric method.Results.Twenty-four patients with DADA2 were included: 14 with polyarteritis nodosa (PAN)-like phenotype (Group 1); 9 with Diamond-Blackfan anemia (DBA)-like features, and 1 with immunodeficiency (Group 2). Fourteen PAN-like DADA2 patients did not have the typical thrombocytosis seen in classic PAN. Inflammatory attacks were evident only in Group 1 patients. Serum ADA2 activity was low in all patients with DADA2 except one, who was tested after hematopoietic stem cell transplantation. There was no significant difference in ADA2 activities between PAN-like and DBA-like patients. In DADA2 patients with one ADA2 mutation, serum ADA2 activities were as low as those of patients with homozygote DADA2. ADA2 activities were normal in non-DADA2 patients. ADA2 mutations were affecting the dimerization domain in Group 1 patients and the catalytic domain in Group 2 patients.Conclusion.We suggest assessing ADA2 activity along with genetic analysis because there are patients with one ADA2 mutation and absent enzyme activity. Our data suggest a possible genotype–phenotype correlation in which dimerization domain mutations are associated with PAN-like phenotype, and catalytic domain mutations are associated with hematological manifestations.
We describe seven Turkish children with DOCK8 deficiency who have not been previously reported. Three patients presented with typical features of recurrent or severe cutaneous viral infections, atopic dermatitis, and recurrent respiratory or gastrointestinal tract infections. However, four patients presented with other features. Patient 1-1 featured sclerosing cholangitis and colitis; patient 2-1, granulomatous soft tissue lesion and central nervous system involvement, with primary central nervous system lymphoma found on follow-up; patient 3-1, a fatal metastatic leiomyosarcoma; and patient 4-2 showed no other symptoms initially besides atopic dermatitis. Similar to other previously reported Turkish patients, but in contrast to patients of non-Turkish ethnicity, the patients’ lymphopenia was primarily restricted to CD4+ T cells. Patients had homozygous mutations in DOCK8 that altered splicing, introduced premature terminations, destabilized protein, or involved large deletions within the gene. Genotyping of remaining family members showed that DOCK8 deficiency is a fully penetrant, autosomal recessive disease. In our patients, bone marrow transplantation resulted in rapid improvement followed by disappearance of viral skin lesions, including lesions resembling epidermodysplasia verruciformis, atopic dermatitis, and recurrent infections. Particularly for patients who feature unusual clinical manifestations, immunological testing, in conjunction with genetic testing, can prove invaluable in diagnosing DOCK8 deficiency and providing potentially curative treatment.
Background Coronin-1A (CORO1A) is a regulator of actin dynamics important for T cell homeostasis. CORO1A deficiency causes T−B+NK+ severe combined immunodeficiency or T cell lymphopenia with severe viral infections. However, since all known human mutations in CORO1A abrogate protein expression, the role of the protein’s functional domains in host immunity is unknown. Objective To identify the cause of the primary immunodeficiency in two young adult siblings with a history of disseminated varicella, cutaneous warts, and CD4+ T cell lymphopenia. Methods We performed immunologic, genetic, and biochemical studies in the patients, family members, and healthy controls. Results Both patients had CD4+ T cell lymphopenia and decreased lymphocyte proliferation to mitogens. IgG, IgM, IgA and specific antibody responses were normal. Whole genome sequencing identified a homozygous frameshift mutation in CORO1A disrupting the last two C-terminal domains by replacing 61 a.a. with a novel 91 a.a. sequence. The CORO1AS401fs mutant was expressed in the patients’ lymphocytes at a level comparable with that of wild-type CORO1A in normal lymphocytes, but failed to oligomerize and had impaired cytoskeletal association. CORO1AS401fs was associated with increased F-actin accumulation in T cells, severely defective thymic output, and impaired T cell survival, but normal calcium flux and cytotoxicity, demonstrating the importance of CORO1A oliogomerization and subcellular localization in T cell homeostasis. Conclusions We describe a truncating mutation in CORO1A that permits protein expression and survival into young adulthood. Our studies demonstrate the importance of intact CORO1A C-terminal domains in thymic egress and T cell survival as well as in the defense against viral pathogens.
Primary immunodeficiencies (PIDs) represent a large group of disorders with an increased susceptibility to infections. Severe combined immunodeficiency (SCID) is the most severe form of primary immunodeficiencies (PIDs) with marked Tcell lymphopenia. Investigation of the genetic aetiology using classical Sanger sequencing is associated with considerable diagnostic delay. We here established a custom-designed, next-generation sequencing (NGS)-based panel to efficiently identify disease-causing genetic defects in PID patients and applied this method in SCID patients of Turkish origin with previously undefined genetic aetiology. We used HaloPlex enrichment technology, a targeted, NGS-based method which was designed to diagnose patients with SCID and other PIDs. Our HaloPlex panel included a total of 356 PID-related genes, and we searched disease-causing mutations in 19 Turkish SCID patients without a genetic diagnosis. The coverage of targeted regions ranged from 97.47% to 99.62% with an average of 98.31% for all patients. All known SCID genes were covered with a percentage of at least 97.3%. We made a genetic diagnosis in six of 19 (33%) patients, including four novel disease-causing mutations identified in RAG1, JAK3 and IL2RG, respectively. We showed that this NGS-based method can provide rapid genetic diagnosis for patients suffering from SCID, potentially facilitating clinical treatment decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.