Abstract. We study the decomposition of central simple algebras of exponent 2 into tensor products of quaternion algebras. We consider in particular decompositions in which one of the quaternion algebras contains a given quadratic extension. Let B be a biquaternion algebra over F ( √ a) with trivial corestriction. A degree 3 cohomological invariant is defined and we show that it determines whether B has a descent to F . This invariant is used to give examples of indecomposable algebras of degree 8 and exponent 2 over a field of 2-cohomological dimension 3 and over a field M(t) where the u-invariant of M is 8 and t is an indeterminate. The construction of these indecomposable algebras uses Chow group computations provided by A. S. Merkurjev in Appendix.
Let A be a central simple algebra over a field F . Let k1, . . . , kr be cyclic extensions of F such that k1 ⊗F · · · ⊗F kr is a field. We investigate conditions under which A is a tensor product of symbol algebras where each ki is in a symbol F -algebra factor of the same degree as ki. As an application, we give an example of an indecomposable algebra of degree 8 and exponent 2 over a field of 2-cohomological dimension 4.
We study the behavior of square-central elements and Artin-Schreier elements in division algebras of exponent 2 and degree a power of 2. We provide chain lemmas for such elements in division algebras over 2-fields F of cohomological 2-dimension cd 2 (F) ≤ 2, and deduce a common slot lemma for tensor products of quaternion algebras over such fields. We also extend to characteristic 2 a theorem proven by Merkurjev for characteristic not 2 on the decomposition of any central simple algebra of exponent 2 and degree a power of 2 over a field F with cd 2 (F) ≤ 2 as a tensor product of quaternion algebras.
In this paper we associate an invariant to a biquaternion algebra B over a field K with a subfield F such that K/F is a quadratic separable extension and char(F) = 2. We show that this invariant is trivial exactly when B B 0 ⊗ K for some biquaternion algebra B 0 over F. We also study the behavior of this invariant under certain field extensions and provide several interesting examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.