Orphan G-protein-coupled receptors are a large class of receptors whose cognate ligands are unknown. SP9155 (also referred to as AQ27 and GPR103) is an orphan G-protein-coupled receptor originally cloned from a human brain cDNA library. SP9155 was found to be predominantly expressed in brain, heart, kidney, retina, and testis. Phylogenetic analysis shows that SP9155 shares high homology with Orexin, NPFF, and cholecystokinin (CCK) receptors, but identification of the endogenous ligand for SP9155 has not been reported. In this study, we have used a novel method to predict peptides from genome data bases. From these predicted peptides, a novel RF-amide peptide, P52 was shown to selectively activate SP9155-transfected cells. We subsequently cloned the precursor gene of the P52 ligand and characterized the activity of other possible peptides encoded by the precursor. This revealed an extended peptide, P518, which exhibited high affinity for SP9155 (EC 50 ؍ 7 nM). mRNA expression analysis revealed that the peptide P518 precursor gene is predominantly expressed in various brain regions, coronary arteries, thyroid and parathyroid glands, large intestine, colon, bladder, testes, and prostate. These results indicate the existence of a novel RF-amide neuroendocrine peptide system, and suggest that SP9155 is likely the relevant G-protein-coupled receptor for this peptide.G-protein coupled receptors (GPCRs) 1 are members of a large protein family that share a common structural motif of seven transmembrane domains (1, 2). GPCRs mediate a variety of physiological functions by interacting with extracellular ligands including small chemical molecules, peptides, and proteins, then transmitting the signal to intracellular second messengers via G proteins (1, 2). In recent years, the primary sequence of many GPCRs have been identified through searching the human genome sequence data base. Whereas these GPCRs have common structural motifs including seven transmembrane domains, often their cognate ligands and biological function are unknown (3-5). To understand the biological functions of these so called orphan receptors, and to enable identification of pharmacological agents active at these receptors, it is helpful to first identify their endogenous cognate ligands (3-5). Currently there are two main approaches generally used to identify orphan receptor ligands. One common approach has been to screen the orphan GPCRs against a collection of known or putative GPCR ligands. This approach has been used successfully to identify several ligand receptor pairings, including MCH, NMU, and P2Y13 etc. (6 -8). However, because ligand collections are somewhat limited, they often do not contain the appropriate ligand for the orphan receptor of interest. Another approach involves purification of the ligands from animal tissue extracts. This approach has also been successful in a number of cases including OFQ/Nociceptin, MCH, Orexin, and P2Y12 etc. (9 -13). However, purification of ligands from animal tissue extracts is labor-intensive and is c...
Hepatocytes are routinely used to generate and identify drug metabolites and hepatic toxicity. Primary cultures of human hepatocytes are the model cell of choice for most of these pharmacological and toxicological studies. However, major problems are encountered with primary liver cell cultures: the dwindling availability of viable livers, hepatocytes having a limited life span, the loss of liver-specific functions in culture, and the donor to donor variability. These limitations have created a significant need for an in vitro hepatocyte system, which has both the potential for use in toxicological and pharmaceutical studies as well as clinical applications. Ectopic expression of human telomerase reverse transcriptase (hTERT) is one of the major strategies used to develop immortalized cells. Immortalization of primary cells using hTERT allows retention of the original cellular characteristics and functions and avoids some of the genetic and phenotypic instabilities associated with using known oncogenes. In the present study, we developed a cell line from human neonatal hepatocytes by transduction with a recombinant retrovirus expressing the hTERT gene. Induction of stable expression of hTERT in the neonatal cells led to immortalization of these cells. The cell line was cultured continuously for more than 25 passages, equivalent to >25 population doublings, whereas the parental cells senesced within five passages. Analysis of telomerase activity as measured by telomeric repeat amplification protocol assay indicated elevated levels of telomerase activity in immortalized cells compared to the parental cells. These immortalized human hepatocytes cells maintained a normal diploid karyotype as well as the gene expression profile similar to that of human normal neonatal hepatocytes. The data suggest that these immortalized cells preserved some of the biological characteristics of hepatic progenitor cells and might be useful as an in vitro model for pharmacological and toxicity studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.