An intact cell wall is critical for cellular interactions with the environment and protecting the cell from environmental challenges. Signaling mechanisms are necessary to monitor cell wall integrity and to regulate cell wall production and remodeling during growth and division cycles. The green alga, Chlamydomonas , has a proteinaceous cell wall of defined structure that is readily removed by gametolysin (g-lysin), a metalloprotease released during sexual mating. Naked cells treated with g-lysin induce the mRNA accumulation of >100 cell wall-related genes within an hour, offering a system to study signaling and regulatory mechanisms for de novo cell wall assembly. Combining quantitative RT-PCR and luciferase reporter assays to probe transcript accumulation and promoter activity, we revealed that up to 500-fold upregulation of cell wall-related genes was driven at least partly by transcriptional activation upon g-lysin treatment. To investigate how naked cells trigger this rapid transcriptional activation, we tested whether osmotic stress and cell wall integrity are involved in this process. Under a constant hypotonic condition, comparable levels of cell wall-gene activation were observed by g-lysin treatment. In contrast, cells in an iso- or hypertonic condition showed up to 80% reduction in the g-lysin-induced gene activation, suggesting that osmotic stress is required for full-scale responses to g-lysin treatment. To test whether mechanical perturbation of cell walls is involved, we isolated and examined a new set of cell wall mutants with defective or little cell walls. All cell wall mutants examined showed a constitutive upregulation of cell wall-related genes at a level that is only achieved by treatment with g-lysin in wild-type cells. Our study suggests a cell wall integrity monitoring mechanism that senses both osmotic stress and mechanical defects of cell walls and regulates cell wall-gene expression in Chlamydomonas , which may relate to cell wall integrity signaling mechanisms in other organisms.
Eukaryotic sexual life cycles alternate between haploid and diploid stages, the transitions between which are delineated by cell fusion and meiotic division. Transcription factors in the TALE-class homeobox family, GSM1 and GSP1, predominantly control gene expression for the haploid-to-diploid transition during sexual reproduction in the unicellular green alga, Chlamydomonas reinhardtii. To understand the roles that GSM1 and GSP1 play in zygote development, we used gsm1 and gsp1 mutants and examined fused gametes that normally undergo the multiple organellar fusions required for the genetic unity of the zygotes. In gsm1 and gsp1 zygotes, no fusion was observed for the nucleus and chloroplast. Surprisingly, mitochondria and endoplasmic reticulum, which undergo dynamic autologous fusion/fission, did not undergo heterologous fusions in gsm1 or gsp1 zygotes. Furthermore, the mutants failed to resorb their flagella, an event that normally renders the zygotes immotile. When gsm1 and gsp1 zygotes resumed the mitotic cycle, their two nuclei fused prior to mitosis, but neither chloroplastic nor mitochondrial fusion took place, suggesting that these fusions are specifically turned on by GSM1/GSP1. Taken together, this study shows that organellar restructuring during zygotic diploidization does not occur by default but is triggered by a combinatorial switch, the GSM1/GSP1 dyad. This switch may represent an ancient mechanism that evolved to restrict genetic recombination during sexual development.
An intact cell wall is critical for protecting the cell from osmotic challenges and harmful environments. Signaling mechanisms are necessary to monitor cell wall integrity and to regulate cell wall production and remodeling during growth and division cycles. The green alga, Chlamydomonas, has a proteinaceous cell wall of defined structure that is readily removed by gametolysin (g-lysin), a metalloprotease released during sexual mating. Naked cells treated with g-lysin induce the mRNA accumulation of > 100 cell wall-related genes within an hour, offering a system to study signaling and regulatory mechanisms for de novo cell wall assembly. Combining quantitative RT-PCR and luciferase reporter assays to probe transcript accumulation and promoter activity, we revealed that up to 500-fold upregulation of cell wall-related genes was driven at least partly by transcriptional activation upon g-lysin treatment. To investigate how naked cells trigger this rapid transcriptional activation, we tested whether osmotic stress and cell wall integrity are involved in this process. Under a constant hypotonic condition, comparable levels of cell wall-gene activation were observed by g-lysin treatment. In contrast, cells in an iso- or hypertonic condition showed up to 80% reduction in the g-lysin-induced gene activation, suggesting that hypotonic conditions are required for full-scale responses to g-lysin treatment. To test whether mechanical perturbation is involved, we isolated and examined a new set of cell wall mutants with defective or little cell walls. All cell wall mutants examined showed a constitutive upregulation of cell wall-related genes at the level, which would only be achieved by the g-lysin treatment in wild-type cells. Our study suggests a signaling that monitors mechanical defects of cell walls and regulates cell wall-gene expression in Chlamydomonas, which may relate to cell wall integrity signaling mechanisms in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.