Here we report the industrial pollution effects due to cadmium on the reproductive health of Mytilus galloprovincialis. Mussels were removed from the biofouling of a Conatex panel after one year exposition at a polluted site near a disposal metallurgical factory. A high cadmium bioaccumulation was observed in the testis of mussels housed at the polluted site, with respect to a control site, as determined by inductively coupled plasma-mass spectrometry, along with a 10 fold increase in metallothionein 20 kDa gene (mt20) expression levels determined by qPCR. Furthermore, mussels transferred into laboratory tanks from the reference site, and exposed to 1.5, 5 and 10 µM CdCl, revealed a 1.7, 3.2 and 4.5 fold expression increase in the testis mt20, respectively, and a positive correlation with cadmium bioaccumulation was found. To evaluate a potential detrimental risk of such alterations on spermatozoa, we carried out electrophoretic analyses on their protamine-like proteins. As determined by AU-PAGE, after 1.5 µM CdCl exposure, protamine-like proteins also display major alterations with respect to those obtained after 5 and 10 µM CdCl exposure. All protamine-like proteins isolated from the polluted biofouling were in an aggregated form and displayed the same reduced DNA binding affinity of the protamine-like proteins obtained after 1.5 µM CdCl as demonstrated EMSA with sperm genomic DNA. Our results contribute to the studies concerning cadmium induced testis alterations and highlight protamine-like proteins' analysis as an emerging biotechnique for cadmium impact assessment on Mytilus galloprovincialis, for the sensitivity of the in vivo and in vitro changes of protamine-like proteins' state and their DNA binding affinity.
Important toxicological achievements have been made during the last decades using reptiles. We focus our investigation on gonadal reproductive health of the soil biosentinel Podarcis sicula which is very sensitive to endocrine-disrupting chemicals. The aim of this study is to quantitatively detect, by sensitive microassays, reactive oxygen species and the glutathione antioxidants in the testis and investigate if they are differentially expressed before and after remediation of a site of the "Land of Fires" (Campania, Italy) subject to illicit dumping of unknown material. The oxidative stress level was evaluated by electron spin resonance spectroscopy applying a spin-trapping procedure able to detect products of lipid peroxidation, DNA damage and repair by relative mobility shift, and poly(ADP-ribose) polymerase enzymatic activity, respectively, the expression of glutathione peroxidase 4 transcript by real-time quantitative PCR analysis, the antioxidant glutathione S-transferase, a well-assessed pollution index, by enzymatic assay and the total soluble antioxidant capacity. Experimental evidences from the different techniques qualitatively agree, thus confirming the robustness of the combined experimental approach. Collected data, compared to those from a reference unpolluted site constitute evidence that the reproductive health of this lizard is impacted by pollution exposure. Remediation caused significant reduction of reactive oxygen species and downregulation of glutathione peroxidase 4 mRNAs in correspondence of reduced levels of glutathione S-transferase, increase of antioxidant capacity, and repair of DNA integrity. Taken together, our results indicate directions to define new screening approaches in remediation assessment.
In this work, we describe results of the reproductive health monitoring studies in Mytilus galloprovincialis following spermatozoa hsp70 expression and protamine-like protein properties. Mussels control (ctr) were released within cages for 30 days in three different marine sites near Naples (Campania, Italy): Bagnoli south (BAs) and Bagnoli north (BAn), both close to a disposal metallurgical factory and in Capo Miseno (CM). Studies of hsp70 gene expression carried out, by RT-qPCR, in mussel spermatozoa have shown varied expression levels, particularly 5, 13, and 15-fold more than ctr in CM, BAs, and BAn, respectively, indicating highest involvement of stress proteins in spermatozoa of mussels in Bagnoli. In order to evaluate the possible risk on Mytilus galloprovincialis sustainability loss, electrophoretic analyses were performed on protamine-like proteins (PL) of collected spermatozoa. The results showed that CM PL were apparently unaltered with respect to ctr PL, while BAs and BAn PL appeared in part in the form of peptides and in part as bands with low mobility. Further, CM and BAs PL showed, by electrophoretic mobility shift assay, a decrease in DNA binding ability and a change in their DNA binding mode. The results of this investigation show the usefulness of the study of alterations of spermatozoa hsp70 expression and protamine-like protein properties for eco-toxicological evaluation using Mytilus galloprovincialis as a bioindicator.
Model of the our research was the adult male amphibian anura, Pelophylax bergeri, poikilotherm species not considered threatened by the IUCN, sampled in representative sites at different degree. In the first phase, a biochemical characterization of the ADP-ribosylation on the skin of barcoded amphibian anura collected from Matese Lake (clean reference site in CE, Italy) was carried out. Two PARP isoforms were evidence: the first of 66 kDa is localized into nucleus and activated by DNA damage; the second of 150 kDa is in cytoplasm, as demonstrated by biochemical and immunohistochemical analysis. Subsequently, the PARP activity, the quantitative expression of androgen receptor gene, and the levels of arsenic and chromium in skin and testis of frog and soil, water, and sediment collected from sites at different degrees of pollution were measured. A significant variation of PARP activity and androgen receptor expression levels was detected in both tissues of barcoded frogs from Sarno and Scafati, along Sarno River (SA, Italy), suggesting that a PARP activation is correlated to pollution and to steroid-regulated physiology disruption.
Over the last few decades, due to its relevant function in male reproduction assessment, important molecular achievements have been made in the molecular characterization of estrogen receptor genes in various species. Our work focuses on a male seasonal breeder, the bioindicator Podarcis sicula, because of its peculiar gonadal anatomy, similar to that of humans. Based on the cloned lizard's gene sequence fragment of estrogen receptor beta, esr2 (GenBank JN705543.1), we found DNA binding domain identity of 99% as well as a homologous sequence with humans. Furthermore, in order to better illustrate how this gene is regulated in the lizard's reproductive system organs, we investigated the transcriptional activity of esr2 in brain and testis tissues during mating and winter stasis phases of the reproductive cycle. Quantitative real time-polymerase chain reaction (qRT-PCR) analyses performed on male gonadal tissues demonstrate a significant increase in esr2 expression during mating compared to the winter stasis period, while in the brain, esr2 shows the opposite trend. Next, we provide morphological evidence of the detrimental effect on spermatogenesis of a pure anti-estrogen treatment (ICI 182,780) and the corresponding effect on esr2 expression in lizard specimens during the mating period which, upon treatment, was found to be no different from the expression levels in winter stasis both in the brain and in the testis. In this study, we explore the potential use of Podarcis sicula as a model for human testis development and maturation, as well as esr2 expression for toxicological screening in one-testis gonadectomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.