Abstract.Measurement of the image and video quality is crucial for many aspects,such as transmission, compression, perception.The most of traditional methods learning-based image quality assessment(IQA) build the mapping function of the distortion and mass fraction. However,the mapping function is hard to built,and not accurate enough to show the relationship between the linguistic description and numerical number. In this paper,we proposed a new framework to blindly evaluate the quality of an image by learning the regular pattern from natural scene statistics (NSS).Our framework consists of two stages. Firstly,the distortion image is presented by NSS.The Deep Belief Network (DBNs) is used to classify the NSS features to several distortion types. Secondly,a newly qualitative quality pool is proposed according to the distortion types,which converts the distortion types of the image and the degree of the distortion into the numerical scores.In this paper,he proposed distortion classification method is not only more natural than the regression-based,but also more accurate.The experience is conducted on the LIVE image quality assessment database. Extensive studies confirm the effectiveness and robustness of our framework.
Effects of water layers of different thickness and different frequencies of sound for sound transmission intensity have been analyzed by calculations of sound waves propagating in air and water layer. The results have showed that, when water layer thickness is less than 5mm, the changes of thickness have a powerful effect on sound waves, while it is more than 5mm, there is nearly no effect with different thickness, however, frequency of sound waves play a decisive role, especially when the sound wave frequency is less than 100Hz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.