Distributed video transcoding has been used to huge video data storage overhead and reduce transcoding delay caused by the rapid development of mobile video services. Distributed transcoding can leverage the computing power of clusters for various user requests and diverse video processing demands. However, it imposes a remaining challenge on how to efficiently utilize the computing power of the cluster as well as achieve optimized performance through reasonable system parameters and video processing configurations. In this paper, we design a Cluster-based Distributed Video Transcoding System called CDVT using Hadoop, FFmpeg, and Mkvmerge to achieve on-demand video splitting, on-demand transcoding, and distributed processing, which can be applied to large scale video sharing over mobile devices. In order to further optimize system performance, we conducted extensive experiments on various data sets to find relevant factors that affect transcoding efficiency. We dynamically reconfigure the cluster and evaluate the impacts of different intermediate tasks, splitting strategies, and memory configuration strategies on system performance. Experimental results obtained under various workloads demonstrate that the proposed system can ensure the quality of transcoding tasks while reducing the time cost by up to 50 percent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.