The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on heldout test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.
Neural networks need big annotated datasets for training. However, manual annotation can be too expensive or even unfeasible for certain tasks, like multi-person 2D pose estimation with severe occlusions. A remedy for this is synthetic data with perfect ground truth. Here we explore two variations of synthetic data for this challenging problem; a dataset with purely synthetic humans and a real dataset augmented with synthetic humans. We then study which approach better generalizes to real data, as well as the influence of virtual humans in the training loss. Using the augmented dataset, without considering synthetic humans in the loss, leads to the best results. We observe that not all synthetic samples are equally informative for training, while the informative samples are different for each training stage. To exploit this observation, we employ an adversarial student-teacher framework; the teacher improves the student by providing the hardest samples for its current state as a challenge. Experiments show that the student-teacher framework outperforms normal training on the purely synthetic dataset.
This paper introduces Ranking Info Noise Contrastive Estimation (RINCE), a new member in the family of InfoNCE losses that preserves a ranked ordering of positive samples. In contrast to the standard InfoNCE loss, which requires a strict binary separation of the training pairs into similar and dissimilar samples, RINCE can exploit information about a similarity ranking for learning a corresponding embedding space. We show that the proposed loss function learns favorable embeddings compared to the standard InfoNCE whenever at least noisy ranking information can be obtained or when the definition of positives and negatives is blurry. We demonstrate this for a supervised classification task with additional superclass labels and noisy similarity scores. Furthermore, we show that RINCE can also be applied to unsupervised training with experiments on unsupervised representation learning from videos. In particular, the embedding yields higher classification accuracy, retrieval rates and performs better on out-of-distribution detection than the standard InfoNCE loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.