Transgenic plants have been widely adopted by growers to manage the western corn rootworm, Diabrotica virgifera virgifera LeConte, in field corn. Because of reduced efficacy in some Nebraska fields after repeated use of Cry3Bb1-expressing hybrids, single plant bioassays were conducted in 2012 and 2013 to characterize the susceptibility of western corn rootworm populations to the rootwormactive proteins Cry3Bb1, mCry3A, and Cry34/35Ab1. Results demonstrate that there are heritable differences in susceptibility of Nebraska western corn rootworm populations to rootworm-active Bt traits. Proportional survival and corrected survival data coupled with field histories collectively support the conclusion that a level of field resistance to Cry3Bb1 has evolved in some Nebraska populations in response to selection pressure and that cross-resistance exists between Cry3Bb1 and mCry3A. There was no apparent cross-resistance between Cry34/35Ab1 and either Cry3Bb1 or mCry3A. The potential implications of these results on current and future corn rootworm management strategies are discussed.
The results of this study show that refuge plants in a seed mixture may be able to provide a comparable refuge population of D. saccharalis to a structured refuge planting.
a b s t r a c tSugarcane borer, Diatraea saccharalis (F.), is a major target of Bt maize in South America and many areas of the US mid-south region. Six laboratory strains of D. saccharalis were established from six single-pair F 2 families possessing major resistance alleles to Cry1Ab maize hybrids. Susceptibility of the six strains was evaluated on diet treated with each of four purified trypsin-activated Bt proteins, Cry1Ab, Cry1Aa, Cry1Ac and Cry1F. Bt susceptibility of the six strains was compared with that of known Cry1Ab-susceptible and -resistant strains of D. saccharalis. At least two of the six strains demonstrated a similar level (>526-fold) of resistance to Cry1Ab as shown in the known Cry1Ab-resistant strain, while resistance levels were relatively lower for other strains (116-to 129-fold). All the six strains were highly cross-resistant to Cry1Aa (71-to 292-fold) and Cry1Ac (30-to 248-fold), but only with a low level to Cry1F (<7-fold). Larval growth of all six strains was also inhibited on Bt-treated diet, but, except for Cry1F, the growth inhibition of the six strains was considerably less than that of the Cry1Ab-susceptible larvae. The results provide clear evidence that the observed resistance to Cry1Ab maize in the six strains is a result of resistance to the Cry1Ab protein in the plants. The low level of cross-resistance between Cry1A and Cry1F suggests that pyramiding these two types of Bt proteins into a plant could be a good strategy for managing D. saccharalis.
Fangneng, "Larval survival and plant injury of Cry1Ab-susceptible, -resistant, and -heterozygous genotypes of the sugarcane borer on transgenic corn containing single or pyramided Bt genes" (2012). Faculty Publications: Department of Entomology. 408.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.