Photoelectrochemical devices based on p-type nanostructured semiconducting materials show strong potentialities for various applications, such as photovoltaics and photocatalysis. While only one study was reported on the use of the reference dye P1 for solid-state p-type dye-sensitized solar cells (DSSC), in this work we have systematically investigated two diketopyrrolopyrrole (DPP) derivatives as sensitizers for solid-state p-type DSSC based on NiO and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) as solidstate electron transporter material. We report on the performance in solid-state p-type DSSC of a simple DPP dye bearing a thienyl carboxylic acid as the binding group and a parent compound substituted by a pyromellitimide (PYRO) playing the role of a secondary inner electron acceptor. By focusing on the dye/PCBM interface, we specifically show using transient photoluminescence measurements that the presence of a secondary electron acceptor unit can efficiently favor the formation of the (dye+/PCBM-) state, owing to its significant reducing ability and lifetime of the charge separated state. As a consequence, using these DPP derivatives leads to unprecedented photocurrents up to 0.45 mA cm −2 , which are 10 times larger than previously reported values for the system based on P1. Our analysis also demonstrates the strong correlation between the ability of the dyes to efficiently generate charge carriers and the resulting photocurrents.
Copper-free Huisgen cycloaddition reaction was applied to post grafted dyes on mesoporous electrodes. It enhances the stability towards desorption and offers the possibility of dye functionalization directly performed on the electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.