Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double-rice cropping to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH4 )/nitrous oxide (N2 O) emissions and agronomic parameters over 2.5 years in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2 O emissions increased two- to threefold in the diversified systems, the strong reduction in CH4 led to a significantly lower (P < 0.05) annual GWP (CH4 + N2 O) as compared to the traditional double-rice cropping system. Measurements of soil organic carbon (SOC) contents before and 3 years after the introduction of upland crop rotations indicated a SOC loss for the R-M system, while for the other systems SOC stocks were unaffected. This trend for R-M systems needs to be followed as it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R-M and R-R, while gross profits for R-A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase in water scarcity, it can be expected that mixed lowland-upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops.
Fire is a major factor controlling global carbon (C) and nitrogen (N) cycling. While direct C and N losses caused by combustion have been comparably well established, important knowledge gaps remain on postfire N losses. Here, we quantified both direct C and N combustion losses as well as postfire gaseous losses (N O, NO and N ) and N leaching after a high-intensity experimental fire in an old shrubland in central Spain. Combustion losses of C and N were 9.4 Mg C/ha and 129 kg N/ha, respectively, representing 66% and 58% of initial aboveground vegetation and litter stocks. Moreover, fire strongly increased soil mineral N concentrations by several magnitudes to a maximum of 44 kg N/ha 2 months after the fire, with N largely originating from dead soil microbes. Postfire soil emissions increased from 5.4 to 10.1 kg N ha year for N , from 1.1 to 1.9 kg N ha year for NO and from 0.05 to 0.2 kg N ha year for N O. Maximal leaching losses occurred 2 months after peak soil mineral N concentrations, but remained with 0.1 kg N ha year of minor importance for the postfire N mass balance. N stable isotope labelling revealed that 33% of the mineral N produced by fire was incorporated in stable soil N pools, while the remainder was lost. Overall, our work reveals significant postfire N losses dominated by emissions of N that need to be considered when assessing fire effects on ecosystem N cycling and mass balance. We propose indirect N gas emissions factors for the first postfire year, equalling to 7.7% (N -N), 2.7% (NO-N) and 5.0% (N O-N) of the direct fire combustion losses of the respective N gas species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.