Multiple species of arbuscular mycorrhizal fungi (AMF) can colonize roots of an individual plant species but factors which determine the selection of a particular AMF species in a plant root are largely unknown. The present work analysed the effects of drought, flooding and optimal soil moisture (15-20 %) on AMF community composition and structure in Sorghum vulgare roots, using PCR-RFLP. Rhizophagus irregularis (isolate BEG 21), and rhizosphere soil (mixed inoculum) of Heteropogon contortus, a perennial C4 grass, collected from the semi-arid Delhi ridge, were used as AMF inocula. Soil moisture functioned as an abiotic filter and affected AMF community assembly inside plant roots by regulating AMF colonization and phylotype diversity. Roots of plants in flooded soils had lowest AMF diversity whilst root AMF diversity was highest under the soil moisture regime of 15-20 %. Although plant biomass was not affected, root P uptake was significantly influenced by soil moisture. Plants colonized with R. irregularis or mixed AMF inoculum showed higher root P uptake than non-mycorrhizal plants in drought and control treatments. No differences in root P levels were found in the flooded treatment between plants colonized with R. irregularis and non-mycorrhizal plants, whilst under the same treatment, root P uptake was lower in plants colonized with mixed AMF inoculum than in non-mycorrhizal plants.
The gharial (Gavialis gangeticus Gmelin) is a fish-eating specialist crocodylian, endemic to south Asia, and critically endangered in its few remaining wild localities. A secondary gharial population resides in riverine-reservoir habitat adjacent to the Nepal border, within the Katerniaghat Wildlife Sanctuary (KWS), and nests along a 10 km riverbank of the Girwa River. A natural channel shift in the mainstream Karnali River (upstream in Nepal) has reduced seasonal flow in the Girwa stretch where gharials nest, coincident with a gradual loss of nest sites, which in turn was related to an overall shift to woody vegetation at these sites. To understand how these changes in riparian vegetation on riverbanks were related to gharial nesting, we sampled vegetation at these sites from 2017 to 2019, and derived an Enhanced Vegetation Index (EVI) from LANDSAT 8 satellite data to quantify riverside vegetation from 1988 through 2019. We found that sampled sites transitioned to woody cover, the number of nesting sites declined, and the number of nests were reduced by > 40%. At these sites, after the channel shift, woody vegetation replaced open sites that predominated prior to the channel shift. Our findings indicate that the lack of open riverbanks and the increase in woody vegetation at potential nesting sites threatens the reproductive success of the KWS gharial population. This population persists today in a regulated river ecosystem, and nests in an altered riparian habitat which appears to be increasingly unsuitable for the continued successful recruitment of breeding adults. This second-ranking, critically endangered remnant population may have incurred an "extinction debt" by living in a reservoir that will lead to its eventual extirpation.
Substantial amounts of nutrients are lost from soils through leaching. These losses can be environmentally damaging, causing groundwater eutrophication and also comprise an economic burden in terms of lost agricultural production. More intense precipitation events caused by climate change will likely aggravate this problem. So far it is unresolved to which extent soil biota can make ecosystems more resilient to climate change and reduce nutrient leaching losses when rainfall intensity increases. In this study, we focused on arbuscular mycorrhizal (AM) fungi, common soil fungi that form symbiotic associations with most land plants and which increase plant nutrient uptake. We hypothesized that AM fungi mitigate nutrient losses following intensive precipitation events (higher amount of precipitation and rain events frequency). To test this, we manipulated the presence of AM fungi in model grassland communities subjected to two rainfall scenarios: moderate and high rainfall intensity. The total amount of nutrients lost through leaching increased substantially with higher rainfall intensity. The presence of AM fungi reduced phosphorus losses by 50% under both rainfall scenarios and nitrogen losses by 40% under high rainfall intensity. Thus, the presence of AM fungi enhanced the nutrient interception ability of soils, and AM fungi reduced the nutrient leaching risk when rainfall intensity increases. These findings are especially relevant in areas with high rainfall intensity (e.g., such as the tropics) and for ecosystems that will experience increased rainfall due to climate change. Overall, this work demonstrates that soil biota such as AM fungi can enhance ecosystem resilience and reduce the negative impact of increased precipitation on nutrient losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.