Background: N-arachidonoyl glycine (NAGly) is an endogenous signaling lipid with a wide variety of biological activity whose biosynthesis is poorly understood. Two primary biosynthetic pathways have been proposed. One suggests that NAGly is formed via an enzymatically regulated conjugation of arachidonic acid (AA) and glycine. The other suggests that NAGly is an oxidative metabolite of the endogenous cannabinoid, anandamide (AEA), through an alcohol dehydrogenase. Here using both in vitro and in vivo assays measuring metabolites with LC/MS/MS we test the hypothesis that both pathways are present in mammalian cells.
A series of small compounds acting at the orphan G proteincoupled receptor GPR92 were screened using a signaling pathway-specific reporter assay system. Lipid-derived molecules including farnesyl pyrophosphate (FPP), N-arachidonylglycine (NAG), and lysophosphatidic acid were found to activate GPR92. FPP and lysophosphatidic acid were able to activate both G q/11 -and G s -mediated signaling pathways, whereas NAG activated only the G q/11 -mediated signaling pathway. Computer-simulated modeling combined with site-directed mutagenesis of GPR92 indicated that Thr 97 , Gly 98 , Phe 101 , and Arg 267 of GPR92 are responsible for the interaction of GPR92 with FPP and NAG. Reverse transcription-PCR analysis revealed that GPR92 mRNA is highly expressed in the dorsal root ganglia (DRG) but faint in other brain regions. Peripheral tissues including, spleen, stomach, small intestine, and kidney also expressed GPR92 mRNA. Immunohistochemical analysis revealed that GPR92 is largely co-localized with TRPV1, a nonspecific cation channel that responds to noxious heat, in mouse and human DRG. FPP and NAG increased intracellular Ca 2؉ levels in cultured DRG neurons. These results suggest that FPP and NAG play a role in the sensory nervous system through activation of GPR92.
N-arachidonoyl glycine is an endogenous arachidonoyl amide that activates the orphan G protein-coupled receptor (GPCR) GPR18 in a pertussis toxin (PTX)-sensitive manner and produces antinociceptive and antiinflammatory effects. It is produced by direct conjugation of arachidonic acid to glycine and by oxidative metabolism of the endocannabinoid anandamide. Based on the presence of enzymes that conjugate fatty acids with glycine and the high abundance of palmitic acid in the brain, we hypothesized the endogenous formation of the saturated Nacyl amide N-palmitoyl glycine (PalGly). PalGly was partially purified from rat lipid extracts and identified using nanohigh-performance liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry. Here, we show that PalGly is produced after cellular stimulation and that it occurs in high levels in rat skin and spinal cord. PalGly was up-regulated in fatty acid amide hydrolase knockout mice, suggesting a pathway for enzymatic regulation. PalGly potently inhibited heat-evoked firing of nociceptive neurons in rat dorsal horn. In addition, PalGly induced transient calcium influx in native adult dorsal root ganglion (DRG) cells and a DRG-like cell line (F-11). The effect of PalGly on the latter cells was characterized by strict structural requirements, PTX sensitivity, and dependence on the presence of extracellular calcium. PalGlyinduced calcium influx was blocked by the nonselective calcium channel blockers ruthenium red, 1-(-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-
Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-L-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive.fatty acyl amides I n mammals, including humans, bone mass is determined by an unremitting remodeling process whereby the mineralized matrix is continuously removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. This process is regulated by autocrine/paracrine factors, such as receptor activator of nuclear-κB ligand (RANKL), osteoprotegerin (OPG), bone morphogenetic proteins, and Wnt, as well as circulating hormones (e.g., sex steroids, parathyroid hormone) and brain-derived signals (e.g., sympathetic, pituitary) (1-3). Imbalanced bone remodeling leads to skeletal pathologies, mainly osteoporosis, the most common degenerative disorder in affluent societies, which results from a net increase in bone resorption (4). Identification of endogenous constituents, which regulate bone remodeling and skeletal mass, contributes to the elucidation of the mechanisms involved in this process and offers promise for developing novel antiosteoporotic pharmacotherapy.Amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) represent a major group of endogenous lipids. In mammalian tissues they have numerous physiological functions. For example, anandamide (arachidonoyl ethanolamide) is the first identified endogenous psychoactive ligand of cannabinoid receptors (5); arachidonoyl serine is an endogenous vasodilator, which does not bind to the cannabinoid receptors (6); and oleoyl ethanolamide is an endogenous structural analog to anandamide that regulates food intake through the activation of GPR 119 (7, 8). The well-established biosynthetic tendency to follow existing p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.