African-Americans have higher rates of kidney disease than European-Americans. Here we show that in African-Americans, focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (H-ESKD) are associated with two independent sequence variants in the APOL1 gene on chromosome 22 [FSGS odds ratio = 10.5 (95% CI 6.0–18.4); H-ESKD odds ratio = 7.3 (95% CI 5.6–9.5)]. The two APOL1 variants are common in African chromosomes but absent from European chromosomes and both reside within haplotypes that harbor signatures of positive selection. ApoL1 is a serum factor that lyses trypanosomes. In vitro assays revealed that only the kidney disease-associated ApoL1 variants lysed Trypanosoma brucei rhodesiense. We speculate that evolution of a critical survival factor in Africa may have contributed to the high rates of renal disease in African-Americans.
The study of T regulatory cells (T reg cells) has been limited by the lack of specific surface markers and an inability to define mechanisms of suppression. We show that the expression of CD39/ENTPD1 in concert with CD73/ecto-5′-nucleotidase distinguishes CD4+/CD25+/Foxp3+ T reg cells from other T cells. These ectoenzymes generate pericellular adenosine from extracellular nucleotides. The coordinated expression of CD39/CD73 on T reg cells and the adenosine A2A receptor on activated T effector cells generates immunosuppressive loops, indicating roles in the inhibitory function of T reg cells. Consequently, T reg cells from Cd39-null mice show impaired suppressive properties in vitro and fail to block allograft rejection in vivo. We conclude that CD39 and CD73 are surface markers of T reg cells that impart a specific biochemical signature characterized by adenosine generation that has functional relevance for cellular immunoregulation.
Trypanolytic variants in APOL1, which encodes apolipoprotein L1, associate with kidney disease in African Americans, but whether APOL1-associated glomerular disease has a distinct clinical phenotype is unknown. Here we determined APOL1 genotypes for 271 African American cases, 168 European American cases, and 939 control subjects. In a recessive model, APOL1 variants conferred seventeenfold higher odds (95% CI 11 to 26) for focal segmental glomerulosclerosis (FSGS) and twenty-ninefold higher odds (95% CI 13 to 68) for HIV-associated nephropathy (HIVAN). FSGS associated with two APOL1 risk alleles associated with earlier age of onset (P ϭ 0.01) and faster progression to ESRD (P Ͻ 0.01) but similar sensitivity to steroids compared with other subjects. Individuals with two APOL1 risk alleles have an estimated 4% lifetime risk for developing FSGS, and untreated HIVinfected individuals have a 50% risk for developing HIVAN. The effect of carrying two APOL1 risk alleles explains 18% of FSGS and 35% of HIVAN; alternatively, eliminating this effect would reduce FSGS and HIVAN by 67%. A survey of world populations indicated that the APOL1 kidney risk alleles are present only on African chromosomes. In summary, African Americans carrying two APOL1 risk alleles have a greatly increased risk for glomerular disease, and APOL1-associated FSGS occurs earlier and progresses to ESRD more rapidly. These data add to the evidence base required to determine whether genetic testing for APOL1 has a use in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.