The growth of initial random errors in temperature forecasts by numerical method using centred time-differenced is investigated. Horizontal advection in one dimension is considered. Assuming that there is no correlation between the initial random errors as the different grid points and neglecting any correlation that may develop in the col1rse of computation, the random errors grow much more rapidly in this method than in forward time differencing. In both methods, correlations develop between the random errors at different grid points in the course of computation. When these are taken in to account, the growth of random errors is further enhanced in the forward differences. In the centred time-differences method, these correlations keep the random error almost at the initial level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.