We used electrophoretic mobility shift assays to investigate the effects of cobalamin (Cbl) deficiency on the levels of activated nuclear factor-kappa B (NF-kappaB) in the spinal cords (SCs) and livers of rats made Cbl-deficient (Cbl-D) by total gastrectomy or a Cbl-D diet. We chose the SC and liver because they are severely or scarcely affected, respectively, by Cbl deficiency in terms of histological damage. We found permanently increased NF-kappaB levels (particularly the p50 and p65 subunits) in the SCs and livers of both types of Cbl-D rats, and Western blot analysis demonstrated increased p65 levels. NF-kappaB and p65 protein levels normalized when the totally gastrectomized (TGX) rats were treated with Cbl replacement. As we have previously demonstrated that Cbl deficiency increases tumor necrosis factor (TNF)-alpha and nerve growth factor (NGF) levels in the SC (each of which is a known NF-kappaB activator), we redetermined NF-kappaB levels in the SCs and livers of TGX rats treated with anti-TNF-alpha or anti-NGF antibodies and found that NF-kappaB levels normalized in both tissues after either treatment. These results demonstrate that: (1) Cbl physiologically and indirectly down-regulates NF-kappaB levels in rat SC and liver, and (2) NF-kappaB is an important signaling molecule after Cbl deficiency injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.