Kinase activity can be modulated reversibly or irreversibly by the reaction of targeted covalent inhibitors with nucleophilic residues in protein active sites. Herein, we present thiol reactivity studies that support α-methylene-γ-lactams as tunable surrogates for the highly reactive α-methylene-γ-lactones. The reactivity of the α-methylene is modulated via the N substituent, and the reaction rates toward glutathione were determined via mass spectrometry. Density functional theory calculations of transition states of thiol additions to α-methylene-γ-lactams revealed that the use of the M06-2X functional with the SMD solvation model and methyl thiolate as a model nucleophile reliably predicts the relative reactivities of the α-methylene-γ-lactams, and quasiharmonic approximations improve the agreement between experiment and computation.
α-Methylene−γ-lactones are present in ∼3% of known natural products, and compounds comprising this motif display a range of biological activities. However, this reactive lactone limits informed structure−activity relationships for these bioactive molecules. Herein, we describe chemically tuning the electrophilicity of the α-methylene−γ-lactone by replacement with an α-methylene−γ-lactam. Guaianolide analogues having α-methylene−γ-lactams are synthesized using the allenic Pauson−Khand reaction. Substitution of the lactam nitrogen with electronically different groups affords diverse thiol reactivity. Cellular NF-κB inhibition assays for these lactams were benchmarked against parthenolide and a synthetic α-methylene−γ-lactone showing a positive correlation between thiol reactivity and bioactivity. Cytotoxicity assays show good correlation at the outer limits of thiol reactivity but less so for compounds with intermediate reactivity. A La assay to detect reactive molecules by nuclear magnetic resonance and mass spectrometry peptide sequencing assays with the La antigen protein demonstrate that lactam analogues with muted nonspecific thiol reactivities constitute a better electrophile for rational chemical probe and therapeutic molecule design.
The α-methylene-γ-lactam offers promise as a complementary warhead for the development of targeted covalent inhibitors. However, an understanding of the factors governing its electrophilic reactivity is needed to promote the development of lead compounds utilizing this motif. Herein we synthesize a series of N-aryl-substituted α-methylene-γ-lactams installed within the framework of a bioactive guaianolide analog. To determine the effects of the guaianolide structure on the electrophilic reactivity, these compounds were reacted with glutathione under biomimetic conditions, and the rate constants were measured. A linear free-energy relationship was observed with the Hammett parameter of the N-aryl group within the cis- or trans-annulated isomeric series of compounds. However, the trans-annulated compounds exhibited a ca. 10-fold increase in reactivity relative to both the cis-annulated compounds and the corresponding N-arylated 3-methylene-2-pyrrolidinones. Density functional theory calculations revealed that the reactivity of the trans-annulated stereoisomers is promoted by the partial release of the ring strain of the fused seven-membered ring in the thio-Michael addition transition state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.