Background: High mobility group box 1 (HMGB1) is a non-histone chromosomal protein implicated in a variety of biologically important processes, including transcription, DNA repair, V(D)J recombination, differentiation, and development. Overexpression of HMGB1 inhibits apoptosis, arguing that the molecule may act as an antiapoptotic oncoprotein. Indeed, increased expression of HMGB1 has been reported for several different tumour types. In this study, we analysed human colon carcinoma for HMGB1 as well as for c-IAP2 expression levels. c-IAP2 is an antiapoptotic protein which may be upregulated as a consequence of nuclear factor kB (NFkB) activation via HMGB1. Methods: A comparative genomic hybridisation (CGH) database comprising 1645 cases from different human tumour types was screened to detect cytogenetic changes at the HMGB1 locus. Immunohistochemical staining of human colon tissue microarrays and tumour biopsies, as well as western blot analysis of tumour lysates, were performed to detect elevated HMGB1 and c-IAP2 expression in colon carcinomas. The antiapoptotic potential of HMGB1 was analysed by measuring caspase activities, and luciferase reporter assays and quantitative polymerase chain reaction analysis were employed to confirm NFkB activation and c-IAP2 mRNA upregulation on HMGB1 overexpression. Results: According to CGH analysis, the genomic locus containing the HMGB1 gene was overrepresented in one third (35/96) of colon cancers. Correspondingly, HMGB1 protein levels were significantly elevated in 90% of the 60 colon carcinomas tested compared with corresponding normal tissues evaluable from the same patients. HMGB1 increased NFkB activity and led to co-overexpression of the antiapoptotic NFkB target gene product c-IAP2 in vitro. Furthermore, increased HMGB1 levels correlated with enhanced amounts of c-IAP2 in colon tumours analysed by us. Finally, we demonstrated that HMGB1 overexpression suppressed caspase-9 and caspase-3 activity, suggesting that HMGB1 interferes with the apoptotic machinery at the level of apoptosomal caspase-9 activation. Conclusions: We identified in vitro a molecular pathway triggered by HMGB1 to inhibit apoptosis via c-IAP2 induction. Our data indicate a strong correlation between upregulation of the apoptosis repressing HMGB1 and c-IAP2 proteins in the pathogenesis of colon carcinoma.
Cutaneous lupus erythematosus (CLE) is a heterogeneous autoimmune disease. Different pathogenetic mechanisms, including the accumulation of apoptotic keratinocytes in CLE, have been reported. Therefore, we investigated whether CLE and other inflammatory skin diseases differ with regard to the epidermal expression of molecules that are crucial for the initiation and regulation of apoptosis. In this study, 241 skin biopsies from patients with CLE, psoriasis (PSO), lichen planus (LP) and healthy controls (HCs) were analysed immunohistochemically using the tissue microarray (TMA) technique. The TUNEL assay and anti-activated caspase-3 antibodies revealed a significant increase of apoptotic keratinocytes in CLE lesions compared with HCs. Furthermore, we detected a significant increase in the epidermal expression of CD95 in CLE specimens compared with PSO, LP and HCs. These data suggest that the accumulation of apoptotic keratinocytes in CLE might be due to the increased epidermal expression of CD95, resulting in increased activity of the extrinsic apoptotic pathway in the disease.
Recently, it was discovered that the receptor activator of nuclear factor jB (RANK) ⁄ RANK ligand (RANKL) is part of an important signal transduction pathway for tissue homoeostasis. Therefore, we were interested in investigating RANKL expression in the epidermis of skin lesions from patients with different subtypes of cutaneous lupus erythematosus (CLE) and psoriasis as well as normal healthy donors. Using the tissue microarray technique, skin biopsy specimens were evaluated by immunohistochemistry. RANKL showed a significantly increased expression in the epidermis of skin biopsy specimens from patients with psoriasis (median: 4, range: 0-5) compared to patients with CLE (median: 0, range: 0-4) (P < 0.001). No significant differences in epidermal RANKL expression between the CLE subtypes were detected. These data show a different expression of RANKL in the epidermis of skin lesions from patients with CLE compared to those with psoriasis suggesting that RANKL might play an important role in the pathogenesis of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.