Dried fruits, vegetables, herbs, and spices are produced in and sourced from many countries worldwide, but they have been increasingly reported to be involved in outbreaks and alerts due to the presence of foodborne pathogens such as Salmonella. These dried products are mainly produced by solar drying and conventional air drying, but a wide range of drying technologies are available. From a technological point of view the general trend is to optimize and standardize the drying process to ensure high-quality products to be offered. Drying technologies are mainly evaluated for their performance to reduce water activity at low energy cost while maintaining good sensorial quality of the dried product. However, as low water activity foods are increasingly recognized to support microbial survival and dried products are often consumed as they are, or are used as ingredients in many ready-to-eat foods, there is increasing attention to the microbiological quality and safety aspects of these products. This review presents traditional and emerging technologies to dry fruits, vegetables, herbs, and spices and discusses their potential to inactivate bacteria and viruses throughout the drying process. Overall, the microbial inactivation effect of the presented technologies has not yet been thoroughly assessed, even for traditional methods like solar drying, conventional air drying, or freeze-drying. Emerging technologies such as dielectric (assisted) drying and low-pressure superheated steam drying have been shown to reduce microbial populations; however, the number of studies is still low. Very few studies have focused on viral inactivation during drying processes.
Metal-orgainc frameworks (MOFs) are a class of hybrid inorganic/organic framework materials and have been widely explored in smart sensing. Among them, MOF-based monochromatic luminescent sensors display a limited detecting accuracy...
The processes and sources of seismo‐ionospheric disturbances are still not clear. In this paper, coseismic ionospheric disturbances (CIDs) are investigated by dual‐frequency GPS observations following the Mw = 7.8 earthquake as results of the oblique‐thrust fault in the Haida Gwaii region, Canada, on 28 October 2012. Results show that the CIDs with an amplitude of up to 0.15 total electron content units (TECU) are found with spreading out at 2.20 km/s, which agree well with the Rayleigh wave propagation speed at 2.22 km/s detected by the bottom pressure records at about 10 min after the onset. The CIDs are a result of the upward propagation acoustic waves trigged by the Rayleigh wave in sequence from near field to far field. The strong correlation is found between the CIDs and the vertical ground motion recorded by seismometers nearby the epicenter. The total electron content (TEC) series from lower‐elevation angle GPS observations have higher perturbation amplitudes. Furthermore, the simulated ionospheric disturbance following a vertical Gauss pulse on the ground based on the finite difference time domain method confirms the ionospheric Rayleigh wave signature in the near field and the vertical ground motion dependence theoretically. The vertical ground motion is the dominant source of the ionospheric Rayleigh wave and affects the CID waveform directly.
Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.