Fast freezing and slow thawing of Salmonella anatum cells suspended in water resulted in injury of more than 90% of the cells that survived the treatment. The injured cells failed to form colonies on the selective medium (xyloselysine-peptone-agar with 0.2% sodium deoxycholate) but did form colonies on a nonselective (xylose-lysine-peptone-agar) plating medium. In Tryptic soy plus 0.3% yeast extract broth or minimal broth, most of the injured cells repaired within 1 to 2 hr at 25 C. Tryptic soy plus yeast extract broth supported repair to a greater extent than minimal broth. Phosphate or citrate at concentrations found in minimal broth supported repair of some cells. MgSO4, when present with inorganic phosphate or citrate or both, increased the extent of repair. The repair process in the presence of phosphate was not prevented by actinomycin D, chloramphenicol, and D-cycloserine, but was prevented by cyanide and 2,4dinitrophenol (only at pH 6). This suggested that the repair process might involve energy metabolism in the form of adenosine triphosphate. The freeze-injured cells were highly sensitive to lysozyme, whereas unfrozen fresh cells were not. In the presence of phosphate or minimal broth this sensitivity was greatly reduced. This suggested that, at least in some of the cells, the injury involved the lipopolysaccharide of the cell wall and adenosine triphosphate synthesis-was required for repair.
Freezing and thawing of Salmonella anatum cells induced increased sensitivity to selective agents in the plating medium. Selective plating media containing the bile salt sodium desoxycholate were most inhibitory. Injury was demonstrated in 11 Salmonella serotypes. The percent injury ranged from 20% (Salmonella heidelberg) to about 60% (Salmonella pullorum, Salmonella anatum, Salmonella infantis, and Salmonella cubana). The percent death ranged from 10% (Salmonella meleagridis and Salmonella infantis) to 27% (Salmonella pullorum and Salmonella oranienburg). The data indicated that 2,4-dinitrophenol prevented repair of injury in all serotypes that exhibited at least 25% injury. This suggested the importance of energy synthesis in the repair process.
Fast freezing and slow thawing of Salmonella anatum cells suspended in water resulted in injury of more than 90% of the cells that survived the treatment. The injured cells failed to form colonies on the selective medium (xyloselysine-peptone-agar with 0.2% sodium deoxycholate) but did form colonies on a nonselective (xylose-lysine-peptone-agar) plating medium. In Tryptic soy plus 0.3% yeast extract broth or minimal broth, most of the injured cells repaired within 1 to 2 hr at 25 C. Tryptic soy plus yeast extract broth supported repair to a greater extent than minimal broth. Phosphate or citrate at concentrations found in minimal broth supported repair of some cells. MgSO 4 , when present with inorganic phosphate or citrate or both, increased the extent of repair. The repair process in the presence of phosphate was not prevented by actinomycin D, chloramphenicol, and D-cycloserine, but was prevented by cyanide and 2,4-dinitrophenol (only at p H 6). This suggested that the repair process might involve energy metabolism in the form of adenosine triphosphate. The freeze-injured cells were highly sensitive to lysozyme, whereas unfrozen fresh cells were not. In the presence of phosphate or minimal broth this sensitivity was greatly reduced. This suggested that, at least in some of the cells, the injury involved the lipopolysaccharide of the cell wall and adenosine triphosphate synthesis was required for repair.
Fast freezing and slow thawing Salmonella anatum cells in various milk components inactivated from 20 to 98% of the cells and damaged 40 to 90% of the cells surviving the treatments. Injured cells failed to form colonies on a selective medium (xylose-lysine-peptone agar with 0.2% sodium deoxycholate) but did form colonies on a nonselective plating medium (xylose-lysine-peptone agar). The major milk components—lactose, milk salts, casein, and whey proteins—influenced the extent of injury, repair of injury, and death. The percentages of cells injured and inactivated were decreased by the presence of any milk components except whey proteins. Also, repair of injury was promoted by the presence of each milk component except whey proteins, which in contrast inhibited repair. Phosphate was the most influential milk salts component that protected the cells and promoted repair of injury. These individual milk components may have decreased the extent of freezing-induced death and cellular damage by stabilizing the S. anatum cell envelope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.