The surface energy, particularly for nanoparticles, is one of the most important quantities in understanding the thermodynamics of particles. Therefore, it is astonishing that there is still great uncertainty about its value. The uncertainty increases if one questions its dependence on particle size. Different approaches, such as classical thermodynamics calculations, molecular dynamics simulations, and ab initio calculations, exist to predict this quantity. Generally, considerations based on classical thermodynamics lead to the prediction of decreasing values of the surface energy with decreasing particle size. This phenomenon is caused by the reduced number of next neighbors of surface atoms with decreasing particle size, a phenomenon that is partly compensated by the reduction of the binding energy between the atoms with decreasing particle size. Furthermore, this compensating effect may be expected by the formation of a disordered or quasi-liquid layer at the surface. The atomistic approach, based either on molecular dynamics simulations or ab initio calculations, generally leads to values with an opposite tendency. However, it is shown that this result is based on an insufficient definition of the particle size. A more realistic definition of the particle size is possible only by a detailed analysis of the electronic structure obtained from initio calculations. Except for minor variations caused by changes in the structure, only a minor dependence of the surface energy on the particle size is found. The main conclusion of this work is that surface energy values for the equivalent bulk materials should be used if detailed data for nanoparticles are not available.
The possibility of focusing images by the autocorrelation function is explained. It can be shown that these techniques are less sensitive to disturbances by noise than others. Furthermore, focusing criteria derived from autocorrelation functions have different responses to image contrast.
It has been shown that these focusing criteria can be determined using binary images and applying the laws of stochastic ergodic metrology. This leads to a large reduction in computing time.
Moreover, an attempt was made to focus by means of binary images determined by simple segmentation. The experimental results show that such a focus criterion operates quite well. The criterion offers the advantage that brightness levels in the image can be chosen selectively for focusing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.