Fabric selection plays an important role in fashion garment design. Designers often use both physical and normalized linguistic criteria for fabric selection. Perception and preference of consumers in their specific sociocultural context, expressed by fashion themes or emotional linguistic criteria, affect greatly new fashion product design. Modeling the relationship between linguistic design criteria and fashion themes of a brand image perceived by consumers becomes thus significant. For setting up this model, we first use fuzzy relations and correlation techniques to select the most relevant linguistic design criteria of fabric hand for each specific fashion theme. The selected criteria can then effectively reduce the complexity of the model and interpret consumer perception of fabrics. Finally, we use a weighted aggregation operator to predict the similarity degree between any new product and fashion themes. Compared with other models, the proposed method is more robust and easier to be interpreted with real data collected for design of senior T-shirt fabrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.