SummaryThe aim of the present study was to assess the cytotoxicity of manumycin, a specific inhibitor of farnesyl:protein transferase, as well as its effects on protein isoprenylation and kinase-dependent signal transduction in COLO320-DM human colon adenocarcinoma which harbours a wild-type K-ras gene. Immunoblot analysis of isolated cell membranes and total cellular lysates of COLO320-DM cells demonstrated that manumycin dose-dependently reduced p21ras farnesylation with a 50% inhibitory concentration (IC 50 ) of 2.51 ± 0.11 µM and 2.68 ± 0.20 µM, respectively, while the geranylgeranylation of p21rhoA and p21rap1 was not affected. Manumycin dose-dependently inhibited (IC 50 = 2.40 ± 0.67 µM) the phosphorylation of the mitogen-activated protein kinase/extracellular-regulated kinase 2 (p42MAPK/ERK2), the main cytoplasmic effector of p21ras, as well as COLO320-DM cell growth (IC 50 = 3.58 ± 0.27 µM) without affecting the biosynthesis of cholesterol. Mevalonic acid (MVA, 100 µM), a substrate of the isoprenoid synthesis, was unable to protect COLO320-DM cells from manumycin cytotoxicity. Finally, manumycin 1-25 µM for 24-72 h induced oligonucleosomal fragmentation in a dose-and timedependent manner and MVA did not protect COLO320-DM cells from undergoing DNA cleavage. The present findings indicate that the inhibition of p21ras processing and signal transduction by manumycin is associated with marked inhibition of cell proliferation and apoptosis in colon cancer cells and the effect on cell growth does not require the presence of a mutated ras gene for maximal expression of chemotherapeutic activity.
Clinical and experimental pharmacokinetic interaction between 6-mercaptopurine (6-MP) and methotrexate (MTX) was investigated in patients as well as in rats and in HL-60 human leukemic cells. Ten children affected by acute lymphoblastic leukemia (ALL) in remission received daily doses of 6-MP given at 25 mg/m2 and i.v. infusion of high-dose MTX at 2 or 5 g/m2 once every other week. When 6-MP was given alone, the mean peak plasma concentration (Cmax) and area under the curve (AUC) of 6-MP were 72.5 ng/ml and 225.3 h ng ml(-1). Concurrent treatment with MTX at 2 or 5 g/m2 resulted in a mean increase of 108% and 121% in the Cmax and of 69% and 93% in the AUC, respectively. In rats treated with an oral dose of 6-MP at 75 mg/m2, MTX given i.p. at 5 g/m2 produced mean increases of 110% and 230% in the Cmax and AUC of 6-MP, respectively. In HL-60 human leukemic cells incubated with 6-MP at 250 ng/ml, the cumulative intracellular concentration of 6-thioguanine and 6-MP nucleotides was not significantly modified by treatment with 20 micrograms/ml of MTX. The present findings indicate that high-dose MTX enhances the bioavailability of 6-MP as evidenced by the observed increases in the plasma Cmax and AUC of 6-MP in humans and animals.
Analogs of geranylgeranyl diphosphate (GGdP) have been demonstrated to inhibit the geranylgeranylation of proteins, producing cytotoxic activity in human prostate cancer cells. A detailed study is reported on the programmed cell death in vitro of human exocrine pancreas cancer cells (MIA PaCa-2) induced by the most active compound of this series of geranylgeranylation inhibitors, the dipotassium salt of (E,E,E)[2-oxo-2-[[(3,7,11,15-tetramethyl-2, 6,10,14-hexadecatetraenyl)-oxy]amino]ethyl] phosphonic acid (BAL 9504), using transmission and scanning electron microscopy (SEM). The results show that, after 72 h of treatment with BAL 9504, 25 microM, most MIA PaCa-2 cells display the typical morphological features of apoptosis, including condensation of nuclear chromatin, dilation of endoplasmic reticulum, and fragmentation of both nucleus and cytoplasm, giving rise to small membrane-bound vesicles (apoptotic bodies); surface protrusions and blebs are well demonstrated by SEM. The electrophoresis showed the presence of various bands corresponding to fragmented DNA of 180 base pairs, or multiples of this length, thus indicating that BAL 9504 effectively induces apoptosis. The present study provides the first evidence that inhibition of protein geranylgeranylation produces apoptosis in human MIA PaCa-2 exocrine pancreas cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.