The effect of crude oil on the growth of legumes (Calopogonium muconoides and Centrosema pubescens) and fate of nitrogen-fixing bacteria in wetland ultisol was investigated using standard cultural techniques. The results revealed observable effects of oil on soil physico-chemistry, plant growth and nodulation as well as on densities of heterotrophic, hydrocarbonoclastic and nitrogen fixing bacteria. The effects however varied with different levels (0.5%, 1%, 5%, 10%, 15% and 20%) of pollution. Ammonium and nitrate levels were high in the unpolluted soil but decreased with increase in pollution levels. Nitrite was not detected in contaminated soil probably due to the reduction in numbers of nitrogen fixers, from 5.26 ± 0.23 × l06cfu/g in unpolluted soil to 9.0 ± 0.12 × 105 and 2.2 ± 0.08 × l05 cfu/g in soils with 5% and 20% levels of pollution respectively. The contaminated soil also exhibited gross reduction in the nodulation of legumes. A range of 13–57 nodules was observed in legumes from polluted soil against 476 nodules recorded for plants cultured on unpolluted soil. The heterogeneity of the microbial loads between oil-polluted and unpolluted soil were statistically significant (p < 0.05, ANOVA). Positive significant relationships were observed between the levels of hydrocarbons and the densities of heterotrophic bacteria (r = 0.91) and that of hydrocarbon utilizing bacteria (r = 0.86). On the other hand, relationships between the densities of nitrogen fixing bacteria and total hydrocarbons content was negative (r = −0.30) while positive relationships were recorded between the densities of different microbial groups and treatment periods except at 15% and 20% pollution levels. The LSD tests revealed highly significant differences (p < 0.001) in the physiological groups of soil microorganisms at all levels of pollution. The results imply that crude oil seriously affects rhizosphere microbial growth in legumes. Among the bacterial species isolated, Clostridium pasteurianum, Bacillus polymyxa and Pseudomonas aeruginosa exhibited greater ability to degrade hydrocarbons than Azotobacter sp, Klebsiella pneumoniae and Derxia gummusa while Nitrosomonas and Nitrobacter had the least degradability. A continuous monitoring of the environment is advocated to prevent extinction of nitrogen-fixing bacteria and total loss of soil fertility attributable to petroleum hydrocarbon contamination in the Niger Delta ultisol.
Municipal landfill leachates are a source of toxic heavy metals that have been shown to have a detrimental effect on human health and the environment. This study aimed to assess heavy metal contamination in leachates, surface water, and sediments from non-sanitary landfills in Uyo, Nigeria, and to identify potential health and environmental effects of leachate contamination. Over the wet and dry seasons, surface water and sediment samples were collected from an impacted freshwater ecosystem, and leachates samples from six monitoring wells. Elemental analyses of samples were conducted following standard analytical procedures and methods. The results indicated that leachate, surface water, and sediment samples all had elevated levels of heavy metals, implying a significant impact from landfills. Pollution indices such as the potential ecological risk index (PERI), pollution load index (PLI), degree of contamination (Cd), modified degree of contamination (mCd), enrichment factor (EF), geoaccumulation index (Igeo), and Nemerov pollution index (NPI) were used to assess the ecological impacts of landfill leachates. The following values were derived: PERI (29.09), PLI (1.96E-07), Cd (0.13), mCd (0.16), EF (0.97–1.79E-03), Igeo (0), and NPI (0.74). Pollution indicators suggested that the sediment samples were low to moderately polluted by chemical contaminants from the non-sanitary landfills, and may pose negative risks due to bioaccumulation. Human health risks were also assessed using standard risk models. For adults, children, and kids, the incremental lifetime cancer rate (ILCR) values were within the acceptable range of 1.00E-06–1.00E-04. The lifetime carcinogenicity risks associated with oral ingestion exposure to heavy metals were 9.09E-05, 1.21E-05, and 3.60 E-05 for kids, adults, and children, respectively. The mean cumulative risk values for dermal exposures were 3.24E-07, 1.89E-06, and 1.17E-05 for adults, children, and kids, respectively. These findings emphasized the risks of human and biota exposure to contaminants from landfills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.