In the present work, we introduce a machine learning-based approach for galaxy clustering. It requires to determine clusters to provide further galaxies groups’ masses estimation. The knowledge of mass distribution is crucial in dark matter research and study of the large-scale structure of the Universe. State-of-the-art telescopes allow various spectroscopy range data accumulation that highlights the need for algorithms with a substantial generalization property. The data we deal with is a combination of more than twenty different catalogues. It is required to provide clustering of all combined galaxies. We produce a regression on the redshifts with the coefficient of determination R 2 equals 0.99992 on the validation dataset with training dataset for 3,154,894 of galaxies (0.0016 < z < 7.0519). The application of a modern hierarchical density clustering algorithm for the separation of the groups of the galaxies allows us to obtain a result that is consistent with the work [4].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.