Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.
In vitro cell cultures were compared to neonatal mice for measuring the infectivity of five genotype 2 isolates of Cryptosporidium parvum. Oocyst doses were enumerated by flow cytometry and delivered to animals and cell monolayers by using standardized procedures. Each dose of oocysts was inoculated into up to nine replicates of 9 to 12 mice or 6 to 10 cell culture wells. Infections were detected by hematoxylin and eosin staining in CD-1 mice, by reverse transcriptase PCR in HCT-8 and Caco-2 cells, and by immunofluorescence microscopy in Madin-Darby canine kidney (MDCK) cells. Infectivity was expressed as a logistic transformation of the proportion of animals or cell culture wells that developed infection at each dose. In most instances, the slopes of the dose-response curves were not significantly different when we compared the infectivity models for each isolate. The 50% infective doses for the different isolates varied depending on the method of calculation but were in the range from 16 to 347 oocysts for CD-1 mice and in the ranges from 27 to 106, 31 to 629, and 13 to 18 oocysts for HCT-8, Caco-2, and MDCK cells, respectively. The average standard deviations for the percentages of infectivity for all replicates of all isolates were 13.9, 11.5, 13.2, and 10.7% for CD-1 mice, HCT-8 cells, Caco-2 cells, and MDCK cells, respectively, demonstrating that the levels of variability were similar in all assays. There was a good correlation between the average infectivity for HCT-8 cells and the results for CD-1 mice across all isolates for untreated oocysts (r ؍ 0.85, n ؍ 25) and for oocysts exposed to ozone and UV light (r ؍ 0.89, n ؍ 29). This study demonstrated that in vitro cell culture was equivalent to the "gold standard," mouse infectivity, for measuring the infectivity of C. parvum and should therefore be considered a practical and accurate alternative for assessing oocyst infectivity and inactivation. However, the high levels of variability displayed by all assays indicated that infectivity and disinfection experiments should be limited to discerning relatively large differences.
Several in vitro surrogates have been developed as convenient, user-friendly alternatives to mouse infectivity assays for determining the viability of Cryptosporidium parvum oocysts. Such viability assays have been used increasingly to determine oocyst inactivation following treatment with chemical, physical, or environmental stresses. Defining the relationship between in vitro viability assays and oocyst infectivity in susceptible hosts is critical for determining the significance of existing oocyst inactivation data for these in vitro assays and their suitability in future studies. In this study, four viability assays were compared with mouse infectivity assays, using neonatal CD-1 mice. Studies were conducted in the United States and United Kingdom using fresh (<1 month) or environmentally aged (3 months at 4°C) oocysts, which were partially inactivated by ozonation before viability and/or infectivity analyses. High levels of variability were noted within and between the viability and infectivity assays in the U.S. and United Kingdom studies despite rigorous control over oocyst conditions and disinfection experiments. Based on the viability analysis of oocyst subsamples from each ozonation experiment, SYTO-59 assays demonstrated minimal change in oocyst viability, whereas 4,6-diamidino-2-phenylindole-propidium iodide assays, in vitro excystation, and SYTO-9 assays showed a marginal reduction in oocyst viability. In contrast, the neonatal mouse infectivity assay demonstrated significantly higher levels of oocyst inactivation in the U.S. and United Kingdom experiments. These comparisons illustrate that four in vitro viability assays cannot be used to reliably predict oocyst inactivation following treatment with low levels of ozone. Neonatal mouse infectivity assays should continue to be regarded as a "gold standard" until suitable alternative viability surrogates are identified for disinfection studies.
A straightforward method is described for screening methanotrophic colonies for soluble methane monooxygenase (sMMO) activity on solid media. Such activity results in the development of a colored complex between 1-naphthol, which is formed when sMMO reacts with naphthalene, and o-dianisidine (tetrazotized). Methanotrophic colonies expressing sMMO turned deep purple when exposed successively to naphthalene and o-dianisidine. The method was evaluated within the contexts of two potential applications. The first was for the enumeration ofMethylosinus trichosporium OB3b in a methane-amended, unsaturated soil column dedicated to vinyl chloride treatment. The second application was for the isolation and enumeration of sMMO-bearing methanotrophs from sanitary landfill soils. The technique was effective in both applications. Methanotrophic bacteria are capable of initiating the degradation of a variety of environmental pollutants including trichloroethylene, the isomers of dichloroethylene, vinyl chloride, and chloroform (9, 11, 12, 21). This phenomenon results from the broad substrate specificity of the initial enzyme in the pathway for methane catabolism, methane monooxygenase (MMO) (2, 12, 17). Methanotrophs possess two types of MMO, a soluble MMO (sMMO) and a particulate, membrane-bound MMO (pMMO). sMMO is considerably more effective than pMMO at catalyzing such nonenergy-yielding transformations; however, sMMO is expressed only in type II (and type X) methanotrophs that have been grown under severely copper-limited conditions (18, 19). Conversely, type I organisms appear to express only pMMO (6). Methylosinus trichosporium OB3b is the best studied of the type II methanotrophs (1, 2, 4, 12, 18). The sMMO of M.
cryptosporidium parvum oocyst viability can be determined by vital dyes, in vitro excystation, and cell culture; however, neonatal mouse infectivity assays are the reference method. Unfortunately, there have been few efforts to standardize methods for infectivity assays thus casting a veil of uncertainty over the significance and comparability of results. In order to address this issue, two laboratories proficient in measuring oocyst infectivity conducted independent dose titration studies with neonatal CD-1 mice using standardized protocols and a well-characterized isolate of Cryptosporidium parvum. The resulting independent logistic dose-response models derived by regression analysis were compared with each other and with a published model. The comparisons showed these dose-response functions to be reproducible under standardized conditions. It is important to standardize mouse strain, age of mice at inoculation and necropsy, oocyst isolate, and age of oocysts. However, other factors, including methods used to detect infectivity and to count oocyst doses, appear less critical. Adopting a standardized assay for oocyst infectivity will provide both a basis for comparing data from various oocyst disinfection studies and a suitable platform for evaluating new or existing in vitro viability surrogates such as excystation, vital dyes or cell culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.