This study aims to reveal how water adsorbed on to a solid can influence its catalytic properties for transesterification in liquid phase. A commercial magnesium silicate was subjected to a range of thermal pretreatments and used for the transesterification of ethyl acetate with methanol. Conversion of ethyl acetate decreased with increasing pretreatment temperature, in direct relation to the release of the water content of the magnesium silicate. Thermogravimetric analysis, diffuse reflectance infrared Fourier transform (DRIFT), and 1H NMR spectroscopies revealed that physically adsorbed water had little influence on the reactivity. The water incorporated within the catalysts, however, which desorbs at higher temperatures, played a key role on the conversion. Calorimetry, in situ DRIFT spectroscopy, and 1H NMR characterization indicate that two kinds of active site exist. These are created from the water coordinated to magnesium located on the edge of the clay‐like particles or in the defects present in the silicate layer, respectively. Their role could be to stabilize methanol deprotonated by basic Mg‐OH groups, activate the ester, or help the departure of the alkoxyl moiety.
Me/Ti-PILC catalysts (Me: La, Se, Rb) were prepared with 60% in weight of Ti-species and 3% in weight of Me-secondary species added under ultrasounds. All materials were characterized by XRF, XPS, XRD, BET, HR-TEM/EDS, FEG-SEM and UV-vis. Three kinds of Ti-oxide nanoparticles were identified: (1) Ti-pillars within the clay layers, (2) rutile nanoflowers, and (3) anatase. In UV-vis spectra, no significant change in the band-gap was observed. In La and Se samples, small variations of the anatase XRD lines are associated with cationic diffusion after deposition of secondary species and calcination. An O1s XPS-peak (533.5 eV) is attributed to oxygen vacancies generated by this diffusion. Phosphate photo-removal in water was studied using phosphoric acid solution (75.97 g L À1 ). Dephosphatation is significantly improved in the presence of Me-species as La/Ti-PILC > Se/Ti-PILC > Rb/Ti-PILC > Ti-PILC. Partial dephosphatation by adsorption is possible in the dark but is strongly improved by UV irradiation. With a La catalyst and under UV irradiation, phosphates (6.6 Â 10 À3 mol L À1 ) were recovered in less than 70 min. Therefore, Me/Ti-PILC have a great potential as photocatalysts for the treatment of wastewaters and the recovery of phosphates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.