The high metabolic demand of cancer cells leads to an accumulation of H ions in the tumour microenvironment. The disorganized tumour vasculature prevents an efficient wash-out of H ions released into the extracellular medium but also favours the development of tumour hypoxic regions associated with a shift towards glycolytic metabolism. Under hypoxia, the final balance of glycolysis, including breakdown of generated ATP, is the production of lactate and a stoichiometric amount of H ions. Another major source of H ions results from hydration of CO produced in the more oxidative tumour areas. All of these events occur at high rates in tumours to fulfil bioenergetic and biosynthetic needs. This Review summarizes the current understanding of how H-generating metabolic processes segregate within tumours according to the distance from blood vessels and inversely how ambient acidosis influences tumour metabolism, reducing glycolysis while promoting mitochondrial activity. The Review also presents novel insights supporting the participation of acidosis in cancer progression via stimulation of autophagy and immunosuppression. Finally, recent advances in the different therapeutic modalities aiming to either block pH-regulatory systems or exploit acidosis will be discussed.
Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis.
Acidosis, a common characteristic of the tumor microenvironment, is associated with alterations in metabolic preferences of cancer cells and progression of the disease. Here we identify the TGF-β2 isoform at the interface between these observations. We document that acidic pH promotes autocrine TGF-β2 signaling, which in turn favors the formation of lipid droplets (LD) that represent energy stores readily available to support anoikis resistance and cancer cell invasiveness. We find that, in cancer cells of various origins, acidosis-induced TGF-β2 activation promotes both partial epithelial-to-mesenchymal transition (EMT) and fatty acid metabolism, the latter supporting Smad2 acetylation. We show that upon TGF-β2 stimulation, PKC-zeta-mediated translocation of CD36 facilitates the uptake of fatty acids that are either stored as triglycerides in LD through DGAT1 or oxidized to generate ATP to fulfill immediate cellular needs. We also address how, by preventing fatty acid mobilization from LD, distant metastatic spreading may be inhibited.
Lactate exchange between glycolytic and oxidative cancer cells is proposed to optimize tumor growth. Blocking lactate uptake through monocarboxylate transporter 1 (MCT1) represents an attractive therapeutic strategy but may stimulate glucose consumption by oxidative cancer cells. We report here that inhibition of mitochondrial pyruvate carrier (MPC) activity fulfils the tasks of blocking lactate use while preventing glucose oxidative metabolism. Using in vitro 13C-glucose and in vivo hyperpolarized 13C-pyruvate, we identify 7ACC2 as a potent inhibitor of mitochondrial pyruvate transport which consecutively blocks extracellular lactate uptake by promoting intracellular pyruvate accumulation. Also, while in spheroids MCT1 inhibition leads to cytostatic effects, MPC activity inhibition induces cytotoxic effects together with glycolysis stimulation and uncompensated inhibition of mitochondrial respiration. Hypoxia reduction obtained with 7ACC2 is further shown to sensitize tumor xenografts to radiotherapy. This study positions MPC as a control point for lactate metabolism and expands on the anticancer potential of MPC inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.