Nuclear factor (NF)-B activation has been clearly linked to the pathogenesis of multiple inflammatory diseases including arthritis. The central role that IB kinase-2 (IKK-2) plays in regulating NF-B signaling in response to inflammatory stimuli has made this enzyme an attractive target for therapeutic intervention. Although diverse chemical classes of IKK-2 inhibitors have been identified, the binding kinetics of these inhibitors has limited the scope of their applications. In addition, safety assessments of IKK-2 inhibitors based on a comprehensive understanding of the pharmacokinetic/pharmacodynamic relationships have yet to be reported. Here, we describe a novel, potent, andPHA-408 is an ATPcompetitive inhibitor, which binds IKK-2 tightly with a relatively slow off rate. In arthritis-relevant cells and animal models, PHA-408 suppresses inflammation-induced cellular events, including IB␣ phosphorylation and degradation, p65 phosphorylation and DNA binding activity, the expression of inflammatory mediators, and joint pathology. PHA-408 was efficacious in a chronic model of arthritis with no adverse effects at maximally efficacious doses. Stemming from its ability to bind tightly to IKK-2, as a novelty, we demonstrated that PHA-408-mediated inhibition of IKK-2 activity correlated very well with its ability to modulate the fate of IKK-2 substrates and downstream transcriptional events. We ultimately directly linked IKK-2 activity ex vivo and in vivo to markers of inflammation with the inhibitor plasma concentrations. Thus, PHA-408 represents a powerful tool to further gain insight into the mechanisms by which IKK-2 regulates NF-B signaling and validates IKK-2 as a therapeutic target.The NF-B family of inducible transcription factors regulates the expression of numerous genes, which are central to developmental and immune processes, cell survival, proliferation, and differentiation (Baeuerle and Henkel, 1994). However, dysregulated NF-B activity leads to the onset of several human pathologies, including cancer and inflammatory diseases such as rheumatoid arthritis, asthma, and in-G.M. and C.D.S. contributed equally to this work. Article, publication date, and citation information can be found at