Hepatoblastoma (HB) is the most common liver tumor of childhood, usually occurring in children under the age of 3 y. The prognosis of patients presenting with distant metastasis, vascular invasion and advanced tumor stages remains poor and children that do survive often face severe late effects from the aggressive chemotherapy regimen. To identify potential new therapeutics for high risk HB we used a 1,000-gene expression signature as input for a Connectivity Map (CMap) analysis, which predicted histone deacetylase (HDAC) inhibitors as a promising therapy option. Subsequent expression analysis of primary HB and HB cell lines revealed a general overexpression of HDAC1 and HDAC2, which has been suggested to be predictive for the efficacy of HDAC inhibition. Accordingly, treatment of HB cells with the HDAC inhibitors SAHA and MC1568 resulted in a potent reduction of cell viability, induction of apoptosis, reactivation of epigenetically suppressed tumor suppressor genes, and the reversion of the 16-gene HB classifier toward the more favorable expression signature. Most importantly, the combination of HDAC inhibitors and cisplatin - a major chemotherapeutic agent of HB treatment - revealed a strong synergistic effect, even at significantly reduced doses of cisplatin. Our findings suggest that HDAC inhibitors skew HB cells toward a more favorable prognostic phenotype through changes in gene expression, thus indicating a targeted molecular mechanism that seems to enhance the anti-proliferative effects of conventional chemotherapy. Thus, adding HDAC inhibitors to the treatment regimen of high risk HB could potentially improve outcomes and reduce severe late effects.
Hepatoblastoma (HB) is the most common liver tumor in children under the age of 3 years worldwide. While many patients achieve good outcomes with surgical resection and conventional chemotherapy, there is still a high-risk population that exhibits a poor treatment response and unfavorable prognosis, which warrants the search for novel treatment options. In recent years, it has become clear that genetic events alone are not sufficient to explain the aggressive phenotype of this embryonal malignancy. Instead, epigenetic modifications and aberrant gene expression seem to be key drivers of HB. In the present study, expression analyses such as reverse transcription-quantitative polymerase chain reaction revealed that the oncogene, MYCN proto-oncogene basic-helix-loop-helix transcription factor (MYCN) was upregulated in HB and other pediatric liver tumors, due to the transcriptional activity of its antisense transcript MYCN opposite strand (MYCNOS). Pyrosequencing demonstrated the hypomethylated regions in the promoter of MYCN and MYCNOS, suggesting that an epigenetic mechanism may underlie the induction of aberrant expression. Transient MYCN knockdown in HB cells resulted in growth inhibition over time. In addition, treating HB cells with the MYCN inhibitors JQ1 and MLN8237 led to the significant downregulation of MYCN either at the mRNA or protein levels, respectively. The underlying mechanism of action of the two inhibitors was revealed to be associated with the induction of dose-dependent growth arrest, by arresting cells at either the G1/G0 or G2 phase. Furthermore, MLN8237 and JQ1 were able to cause spindle disturbances and/or apoptosis in HB cells. The present results suggest that MYCN may be a promising biomarker for HB and a potential therapeutic target in patients with tumors overexpressing MYCN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.