Inflammation is now acknowledged as an hallmark of cancer. Cancer-associated fibroblasts (CAFs) force a malignant cross talk with cancer cells, culminating in their epithelial-mesenchymal transition and achievement of stemness traits. Herein, we demonstrate that stromal tumor-associated cells cooperate to favor malignancy of prostate carcinoma (PCa). Indeed, prostate CAFs are active factors of monocyte recruitment toward tumor cells, mainly acting through stromal-derived growth factor-1 delivery and promote their trans-differentiation toward the M2 macrophage phenotype. The relationship between M2 macrophages and CAFs is reciprocal, as M2 macrophages are able to affect mesenchymal-mesenchymal transition of fibroblasts, leading to their enhanced reactivity. On the other side, PCa cells themselves participate in this cross talk through secretion of monocyte chemotactic protein-1, facilitating monocyte recruitment and again macrophage differentiation and M2 polarization. Finally, this complex interplay among cancer cells, CAFs and M2 macrophages, cooperates in increasing tumor cell motility, ultimately fostering cancer cells escaping from primary tumor and metastatic spread, as well as in activation of endothelial cells and their bone marrow-derived precursors to drive de novo angiogenesis. In keeping with our data obtained in vitro, the analysis of patients affected by prostate cancers at different clinical stages revealed a clear increase in the M2/M1 ratio in correlation with clinical values. These data, coupled with the role of CAFs in carcinoma malignancy to elicit expression of stem-like traits, should focus great interest for innovative strategies aimed at the co-targeting of inflammatory cells and fibroblasts to improve therapeutic efficacy.
Zoledronic acid (ZA) is a biphosphonate used for osteoporosis treatment and also proved to be effective to reduce the pain induced by bone metastases when used as adjuvant therapy in solid cancers. However, it has been recently proposed that ZA could have direct anti-tumour effects, although the molecular mechanism is unknown. We herein unravel a novel anti-tumour activity of ZA in prostate cancer (PCa), by targeting the pro-tumorigenic properties of both stromal and immune cells. Particularly, we demonstrate that ZA impairs PCa-induced M2-macrophages polarization, reducing their pro-invasive effect on tumour cells and their pro-angiogenic features. Crucially, ZA administration reverts cancer associated fibroblasts (CAFs) activation by targeting the mevalonate pathway and RhoA geranyl-geranylation, thereby impairing smooth muscle actin-α fibers organization, a prerequisite of fibroblast activation. Moreover, ZA prevents the M2 macrophages-mediated activation of normal fibroblast, highlighting the broad efficacy of this drug on tumour microenvironment. These results are confirmed in a metastatic xenograft PCa mouse model in which ZA-induced stromal normalization impairs cancer-stromal cells crosstalk, resulting in a significant reduction of primary tumour growth and metastases. Overall these findings reinforce the efficacy of ZA as a potential therapeutic approach to reduce cancer aggressiveness, by abrogating the supportive role of tumour microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.