During prion disease, an increase in misfolded prion protein (PrP) generated by prion replication leads to sustained overactivation of the branch of the unfolded protein response (UPR) that controls the initiation of protein synthesis. This results in persistent repression of translation, resulting in the loss of critical proteins that leads to synaptic failure and neuronal death. We have previously reported that localized genetic manipulation of this pathway rescues shutdown of translation and prevents neurodegeneration in a mouse model of prion disease, suggesting that pharmacological inhibition of this pathway might be of therapeutic benefit. We show that oral treatment with a specific inhibitor of the kinase PERK (protein kinase RNA-like endoplasmic reticulum kinase), a key mediator of this UPR pathway, prevented UPR-mediated translational repression and abrogated development of clinical prion disease in mice, with neuroprotection observed throughout the mouse brain. This was the case for animals treated both at the preclinical stage and also later in disease when behavioral signs had emerged. Critically, the compound acts downstream and independently of the primary pathogenic process of prion replication and is effective despite continuing accumulation of misfolded PrP. These data suggest that PERK, and other members of this pathway, may be new therapeutic targets for developing drugs against prion disease or other neurodegenerative diseases where the UPR has been implicated.
See Mercado and Hetz (doi:) for a scientific commentary on this article.Signalling through the PERK/eIF2α-P branch of the Unfolded Protein Response is increased in many neurodegenerative diseases. Halliday et al. identify two safe compounds – one licensed – that act on this pathway and are neuroprotective in mice with neurodegeneration. These drugs can now be repurposed in clinical trials for the treatment of dementia.
In the healthy adult brain synapses are continuously remodelled through a process of elimination and formation known as structural plasticity1. Reduction in synapse number is a consistent early feature of neurodegenerative diseases2, 3, suggesting deficient compensatory mechanisms. While much is known about toxic processes leading to synaptic dysfunction and loss in these disorders2,3, how synaptic regeneration is affected is unknown. In hibernating mammals, cooling induces loss of synaptic contacts, which are reformed on rewarming, a form of structural plasticity4, 5. We have found that similar changes occur in artificially cooled laboratory rodents. Cooling and hibernation also induce a number cold-shock proteins in the brain, including the RNA binding protein, RBM36. The relationship of such proteins to structural plasticity is unknown. Here we show that synapse regeneration is impaired in mouse models of neurodegenerative disease, in association with the failure to induce RBM3. In both prion-infected and 5×FAD (Alzheimer-type) mice7, the capacity to regenerate synapses after cooling declined in parallel with the loss of induction of RBM3. Enhanced expression of RBM3 in the hippocampus prevented this deficit and restored the capacity for synapse reassembly after cooling. Further, RBM3 over-expression, achieved either by boosting endogenous levels through hypothermia prior to the loss of the RBM3 response, or by lentiviral delivery, resulted in sustained synaptic protection in 5×FAD mice and throughout the course of prion disease, preventing behavioural deficits and neuronal loss and significantly prolonging survival. In contrast, knockdown of RBM3 exacerbated synapse loss in both models and accelerated disease and prevented the neuroprotective effects of cooling. Thus, deficient synapse regeneration, mediated at least in part by failure of the RBM3 stress response, contributes to synapse loss throughout the course of neurodegenerative disease. The data support enhancing cold shock pathways as potential protective therapies in neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.