Background The Onchocercidae is a family of filarial nematodes with several species of medical or veterinary importance. Microfilariae are found in the blood and/or the dermis and are usually diagnosed in humans by microscopy examination of a blood sample or skin biopsy. The main objectives of this study were to evaluate whether filariae DNA can be detected in faecal samples of wild non-human primates (NHPs), whether the detected parasites were closely related to those infecting humans and whether filarial DNA detection in faeces is associated with co-infections with nematodes (Oesophagostumum sp. and Necator sp.) known to cause blood loss while feeding on the host intestinal mucosa. Methods A total of 315 faecal samples from 6 species of NHPs from Cameroon and Gabon were analysed. PCRs targeted DNA fragments of cox1 and 12S rDNA genes, to detect the presence of filariae, and the internal transcribed spacer 2 (ITS2), to detect the presence of Oesophagostomum sp. and Necator sp. infections. Results Among the 315 samples analysed, 121 produced sequences with > 90% homology with Onchocercidae reference sequences. However, 63% of the 12S rDNA and 78% of the cox1 gene sequences were exploitable for phylogenetic analyses and the amplification of the 12S rDNA gene showed less discriminating power than the amplification of the cox1 fragment. Phylogenetic analyses showed that the cox1 sequences obtained from five chimpanzee DNA faecal samples from Gabon and two from Cameroon cluster together with Mansonella perstans with high bootstrap support. Most of the remaining sequences clustered together within the genus Mansonella, but the species could not be resolved. Among the NHP species investigated, a significant association between filarial DNA detection and Oesophagostomum sp. and Necator sp. infection was observed only in gorillas. Conclusions To our knowledge, this is the first study reporting DNA from Mansonella spp. in faecal samples. Our results raise questions about the diversity and abundance of these parasites in wildlife, their role as sylvatic reservoirs and their potential for zoonotic transmission. Future studies should focus on detecting variants circulating in both human and NHPs, and improve the molecular information to resolve or support taxonomy classification based on morphological descriptions.
Measurement of quantitative antibody responses are increasingly important in evaluating the immune response to infection and vaccination. In this study we describe the validation of a quantitative, multiplex serologic assay utilising an electrochemiluminescence platform, which measures IgG against the receptor binding domain (RBD), spike S1 and S2 subunits and nucleocapsid antigens of SARS-CoV-2. The assay displayed a sensitivity ranging from 73-91% and specificity from 90 to 96% in detecting previous infection with SARS-CoV-2 depending on antigenic target and time since infection, and this assay highly correlated with commercially available assays. The within-plate coefficient of variation ranged from 3.8-3.9% and the inter-plate coefficient of variation from 11-13% for each antigen.
Background Which components of the immune response to SARS-CoV-2 vaccination best protect against subsequent infection remains unclear. We explored SARS-CoV-2 specific antibody and B-cell responses post 3rd dose vaccine and their relationship to subsequent SARS-CoV-2 infection. Methods In a multicentre prospective cohort, adult subjects provided samples before and 14 days (d14) post 3rd dose vaccine with Pfizer-BioNTech 162b2. At 18-22 weeks post vaccine, subjects self-reported SARS-CoV-2 infection (confirmed by PCR or antigen test). We used electrochemiluminescence assays to quantify antibodies to SARS-CoV-2 spike subunit 1 (S1), subunit 2 (S2) and receptor-binding domain (RBD) in plasma (reported in WHO IU/mL). In a subset of subjects, we assessed SARS-CoV-2 specific differentiated B-cell (plasma cell) and memory B-cell responses from peripheral blood mononuclear cells. Unstimulated plasma cells, and memory B cells stimulated with R848 and IL2, were seeded on plates coated with RBD or full Spike antigen and antigen-specific responses measured by ELISpot (Mabtech ELISpot, Sweden). We compared between group differences by Wilcoxon signed rank or Mann–Whitney tests. Data are median [IQR] unless specified. Results Of 133 subjects (age 43 [32-50], 81.2% female (table 1), 77 subjects in the B-cell subgroup (table 2)), 47 (35.3%) reported SARS-CoV-2 infection post 3rd vaccine. Antibody titres, plasma cell and memory B-cell responses all increased significantly at d14 post 3rd vaccine (Table 1 & 2, all P< 0.001). Although d14 antibody titres did not differ in those with and without subsequent infection (table 1), those reporting subsequent infection had significantly lower d14 RBD-specific plasma cells and a lower proportion of RBD-specific memory B-cells (Figure 1a-b, both P< 0.05). Similar results were observed with full-spike-specific memory B-cell responses (Figure 1d). The differences persisted when the non-infected group was restricted only to those reporting a confirmed close contact (n=26). Conclusion Infection following 3rd dose vaccine is associated with lower d14 circulating and memory B cell responses, but not antibody titres, suggesting B-cell responses better predict protection against subsequent SARS-CoV-2 infection. Disclosures All Authors: No reported disclosures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.