Overnutrition during pre- and postnatal development both confer increased susceptibility to renal and metabolic risks later in life; however, whether they have an additive effect on the severity of renal and metabolic injury remains unknown. The present study tested the hypothesis that a combination of a pre- and postnatal diet high in fat/fructose would exacerbate renal and metabolic injury in male offspring later in life. Male offspring born to high fat/high-fructose-fed mothers and fed a high-fat/high-fructose diet postnatally (HF-HF) had increased urine albumin excretion (450%), glomerulosclerosis (190%), and tubulointerstitial fibrosis (101%) compared with offspring born to mothers fed a standard diet and fed a standard diet postnatally (NF-NF). No changes in blood pressure or glomerular filtration were observed between any of the treatment groups. The HF-HF offspring weighed ∼23% more than offspring born to mothers fed a high-fat/high-fructose diet and fed a normal diet postnatally (HF-NF), as well as offspring born to mothers fed a standard diet regardless of their postnatal diet. The HF-HF rats also had increased (and more variable) blood glucose levels over 12 wk of being fed a high-fat/high-fructose diet. A combination of exposure to a high-fat/high-fructose diet in utero and postnatally increased plasma insulin levels by 140% compared with NF-NF offspring. Our data suggest that the combined exposure to overnutrition during fetal development and early postnatal development potentiate the susceptibility to renal and metabolic disturbances later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.