Wine geographical traceability is an important topic in the context of wine authentication and for that, many researchers worldwide have addressed this subject by developing different methodologies based on multivariate analysis of natural chemical composition data (inorganic or organic parameters) and isotopic signature. The goal of this work was to assess the potential of elemental composition and strontium isotope ratio ( 87 Sr/ 86 Sr) of wines from important wineproducing regions in Romania, located in relatively small geographical areas, in order to highlight reliable markers for wine geographical origin discrimination. Elemental profile determinations were performed by ICP-MS, GFAAS, and FAAS techniques after microwave acid digestion of the wine samples. The 87 Sr/ 86 Sr isotope ratio of the resulted extracts was determined by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), after separating strontium and rubidium using cation-exchange chromatography with Dowex 50W-X8 resin and the complexation ability of the carboxylic acid EDTA. The variation of elemental composition (Ga, Sr, and Al), Ca/Sr ratio, and the 87 Sr/ 86 Sr ratio of the investigated wine clearly demonstrated that these variables are suitable tracers for wine geographic origin determination. The proposed methodology allowed a 100 % successful classification of wines according to the region of provenance.
Chestnut (Castanea sativa Mill.), a valuable fruit crop, is cultivated in small areas in Romania, mostly in the west, where the moderate continental climate has a slight Mediterranean influence. This work aims to investigate the bioactive characteristics (total polyphenols, total flavonoids and antioxidant activity), individual polyphenolic composition, phytochemical and nutritional HRMS screening profiles, sugar and mineral composition of six sweet chestnut cultivars, namely ‘Marsol’, ‘Maraval’, ‘Bournette’, ‘Précoce Migoule’ and ‘Marissard’ grown at Fruit Growing Research—Extension Station (SCDP) Vâlcea, in Northern Oltenia, Romania. Fruit samples were collected in two consecutive years, in order to study the impact of genetic variability between cultivars and the influence of the different climatic conditions corresponding to different cultivation years. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) allow the discrimination between the sweet chestnut fruits harvested in different years and different sweet chestnut cultivars. Analytical investigations revealed that sweet chestnut cultivars grown in Romania show similar bioactive, phytochemical and nutritional composition to cultivars grown in the large European chestnut-producing countries, indicating the high adaptation potential of the chestnut in the temperate continental zone with small Mediterranean influences characteristic of the southwestern area of Romania.
The study aims to promote clean energy technologies that ensure the recycling and recovery of waste, namely the sewage sludge (SS), by converting it into products (e.g. oil, gas) with added value, contributing thus to reducing the negative impact on environment and health. An experimental setup was proposed in order to achieve the pyrolysis process, by varying the heating rate, (5�C/min, 10�C/min and 50�C/min). The resulted products, namely i) char - SSPyChar, ii) oil - SSPyOil and iii) gas - SSPyGas, were investigated in terms of elemental content, high heat value (HHV), low heat value (LHV) and emission factor (EF). The pyrolysis oils obtained with lower heating rate, 5�C/min and 10 �C/min, presented higher HHV, in comparison with the oils obtained at 50 �C/min, which were rich in water. These oils can have a negative impact on the environment, through their combustion due to their high content of N (6 wt%) and S (1.2 wt%), responsible for the formation of NOx and SOx. Pyrolysis gas revealed in its composition high contents of hydrocarbons (C1-C6), carbon dioxide (CO2) and hydrogen (H2). The highest HHV was obtained by using 5�C/min increment, namely 33.81 MJ/m3. Also, the pyrolysis gases had comparable energy values with natural gas, biogas or gases resulted from the plastic pyrolysis.
The increased demand for energy sources is the driving force to convert organic compounds into alternative fuels. Plastic waste disposal affects the environment, since they are not easily recycled and, during the recycling process, they can produce waste ash, heavy metals, or potentially harmful gas emissions. In the plant design for plastic converting into fuel, the chemical reactor is one of the advanced equipment in the field of chemical and process engineering. This study emphasizes the feasibility of pyrolysis process for valorisation plastics by producing energy-efficient products. In this respect, samples of polypropylene, polyethylene and polystyrene were used as models and subjected to pyrolysis processes at 450 �C, in the presence of two types of mesoporous silica materials, MCM-41 and SBA-15, using a modern developed reactor. The use of mesoporous materials increased the calorific value of the obtained oil and gas, thus improving the economic potential of the process end products. This study dealt with the extraction of oil from plastics termed as plastic pyrolysis oil (PPO) and plastics pyrolysis gas (PPG), with a composition rich in different types of hydrocarbons and they can be marketed at much cheaper rates compared to that present in the market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.