Home gardens are often conceived as a panacea to contribute to the problem of food insecurity in poor rural and urban households. However, systematic reviews indicate weak evidence of significant impacts on families. This way, there has been an intense discussion about their effectiveness. This research aims to generate knowledge about the relevance of assuming food production in home gardens as an alternative to the home consumption. Two questions drive this paper: what number of home gardens, supported by three different government programs, persists? Moreover, what factors explain their permanence? Our sample constituted 261 beneficiaries, and the collection of data was through face-to-face field surveys and in situ visits to the vegetable garden granted. We show that less than 7.5% of gardens remain in right conditions after two years of establishment. The pleasure and need to produce, family involvement, urban/rural location, and the technology provided are determining factors for permanence. The results support the argument that the high rate of home gardens that fail is related to the primacy of politics in considering the problem of food security as a “lack of assets” to produce. Thus, this suggests that there is a weak link between the problem, policies, and the politics.
Due to the issues associated with rare-earth elements, there arises a strong need for magnets with properties between those of ferrites and rare-earth magnets that could substitute the latter in selected applications. Here, we produce a high remanent magnetization composite bonded magnet by mixing FeCo nanowire powders with hexaferrite particles. In the first step, metallic nanowires with diameters between 30 and 100 nm and length of at least 2 μm are fabricated by electrodeposition. The oriented as-synthesized nanowires show remanence ratios above 0.76 and coercivities above 199 kA/m and resist core oxidation up to 300 °C due to the existence of a >8 nm thin oxide passivating shell. In the second step, a composite powder is fabricated by mixing the nanowires with hexaferrite particles. After the optimal nanowire diameter and composite composition are selected, a bonded magnet is produced. The resulting magnet presents a 20% increase in remanence and an enhancement of the energy product of 48% with respect to a pure hexaferrite (strontium ferrite) magnet. These results put nanowire–ferrite composites at the forefront as candidate materials for alternative magnets for substitution of rare earths in applications that operate with moderate magnet performance.
Nanomagnetism is nowadays expanding into three dimensions, triggered by the discovery of new magnetic phenomena and their potential use in applications. This shift towards 3D structures should be accompanied by...
Agroecology, as a science for the study, design and management of sustainable food systems, retakes epistemic, methodological and practical approaches of transdisciplinarity. However, there is not a unanimous understanding of these approaches and few studies investigate its implementation.Transdisciplinarity is defined lato sensu as the practices of collaboration and knowledge integration between non-academic actors and scientists. This approach is at stake in Europe, especially in the field of food systems. Our aim is to analyze the magnitude, conceptions and praxis of works from European agroecologists claiming transdisciplinarity. Based upon a content analysis of publications and interviews with some of their authors, our results show that, although there is a growing literature on transdisciplinarity in Europe, the proportion of publications is low compared to the overall publications in agroecology.Despite the global aspiration of using it as an approach to achieve cognitive justice and horizontal knowledge construction, our typology of transdisciplinarity in practice shows a diversity of patterns. Four clusters were identified, ranging from genuine co-creation of knowledge to uneven collaborations between scientists and stakeholders, thus questioning scholars' responsibility. As a nascent and promising domain, transdisciplinarity in agroecology should be encouraged in European research and experiences capitalized.
In the last few years, magnetic nanowires have gained attention due to their potential implementation as building blocks in spintronics applications and, in particular, in domain-wall- based devices. In these devices, the control of the magnetic properties is a must. Cylindrical magnetic nanowires can be synthesized rather easily by electrodeposition and the control of their magnetic properties can be achieved by modulating the composition of the nanowire along the axial direction. In this work, we report the possibility of introducing changes in the composition along the radial direction, increasing the degrees of freedom to harness the magnetization. In particular, we report the synthesis, using template-assisted deposition, of FeNi (or Co) magnetic nanowires, coated with a Au/Co (Au/FeNi) bilayer. The diameter of the nanowire as well as the thickness of both layers can be tuned at will. In addition to a detailed structural characterization, we report a preliminary study on the magnetic properties, establishing the role of each layer in the global collective behavior of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.