Epilepsy is increasingly conceptualized as a network disorder. In this cross-sectional mega-analysis, we integrated neuroimaging and connectome analysis to identify network associations with atrophy patterns in 1021 adults with epilepsy compared to 1564 healthy controls from 19 international sites. In temporal lobe epilepsy, areas of atrophy colocalized with highly interconnected cortical hub regions, whereas idiopathic generalized epilepsy showed preferential subcortical hub involvement. These morphological abnormalities were anchored to the connectivity profiles of distinct disease epicenters, pointing to temporo-limbic cortices in temporal lobe epilepsy and fronto-central cortices in idiopathic generalized epilepsy. Negative effects of age on atrophy further revealed a strong influence of connectome architecture in temporal lobe, but not idiopathic generalized, epilepsy. Our findings were reproduced across individual sites and single patients and were robust across different analytical methods. Through worldwide collaboration in ENIGMA-Epilepsy, we provided deeper insights into the macroscale features that shape the pathophysiology of common epilepsies.
Previous imaging studies in the Machado-Joseph disease (MJD/SCA3) have mostly concentrated on the cerebellum and brainstem. Our goal was to perform a whole brain longitudinal evaluation. METHODSWe included 45 patients and 51 controls, who underwent two brain magnetic resonance imaging and magnetic resonance spectroscopy (mean interval of 12.5 ± 1.5 months). We used voxel-based morphometry (VBM) and the MarsBar analysis toolbox to extract grey matter density (GMD) values from regions of interest. We used a linear regression model and a general linear model to correlate GMD with clinical markers, and paired t-test for the longitudinal evaluation. RESULTSWe observed decreased GMD (P < .01) at frontal, parietal, temporal and occipital lobes, subcortical grey matter, cerebellum, and brainstem. White matter atrophy was restricted to the cerebellum. Age, CAG, and disease duration predicted GMD in different areas, but age and CAG were the most important predictors. The longitudinal analysis failed to demonstrate changes. Changes in regions other than the cerebellum appeared to contribute significantly to the final International Cooperative Ataxia Rating Scale score. CONCLUSIONWe confirmed cortical involvement in MJD/SCA3. The most important factors in predicting GMD were age and CAG. The lack of progression of atrophy may indicate floor effect and/or short duration of follow-up.
Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of “long COVID-19” syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell–derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike–NRP1 interaction. SARS-CoV-2–infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.
Previous studies demonstrated cognitive impairments in spinocerebellar ataxia type 3 (SCA3/MJD); however, there is no consensus about the cognitive domains affected and the correlation with structural brain abnormalities. We investigated the neuropsychological profile and 3T-MRI findings, including high-resolution T1-images, diffusion tensor imaging and magnetic resonance spectroscopy of 32 patients with SCA3/MJD and 32 age-, gender- and educational level-matched healthy controls. We reviewed patients' clinical history and CAG repeat length, and performed assessment and rating of ataxia (SARA)-Brazilian version and the neuropsychiatric inventory. Patients presented worse performance in episodic and working memory and Beck inventories (depression and anxiety). SCA3/MJD patients had a reduction of gray matter volume (GM) in the cerebellum, putamen, cingulum, precentral and parietal lobe. A positive correlation was identified between the cognitive findings and GM of temporal, frontal, parietal, culmen and insula. We observed positive correlation between the brainstem's fractional anisotropy and digit span-forward. The following cerebellar metabolite groups (measured relative to creatine) were reduced in patients: N-acetyl-aspartate (NAA), NAA + N-acetyl-aspartate-glutamate and glutamate + glutamine (Glx). We found a positive correlation between Corsi's block-tapping task forward with Glx; semantic verbal fluency with phosphorylcholine and glycerophosphorylcholine; digits span-forward with NAA. The cognitive impairments in SCA3/MJD are associated not only with cerebellar and brainstem abnormalities, but also with neuroimaging evidence of diffuse neuronal and axonal dysfunction, particularly in temporal, frontal, parietal and insular areas.
BACKGROUND AND PURPOSE:TA is a branch of image processing that seeks to reduce image information by extracting texture descriptors from the image. TA of MR images of anatomic structures in mild AD and aMCI is not well-studied. Our objective was to attempt to find differences among patients with aMCI and mild AD and normal-aging subjects, by using TA applied to the MR images of the CC and the thalami of these groups of subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.