Mesangial cells, but not podocytes, contain a cytoskeleton capable of contraction that is disorganized in long-term diabetes. Together with previous observations, the distribution of this cytoskeleton suggests that mesangial cell contraction may be involved in the redistribution of glomerular capillary blood flow, but not substantially in the modulation of glomerular distention. Disorganization of stress fibers may be a cause of hyperfiltration in diabetes.
Glomerulosclerosis is one of the complications of diabetes that occurs after many years of uncontrolled hyperglycemia. Mesangial cells (MCs) exposed to high glucose (HG) for short periods have shown that transforming growth factor-beta (TGF-beta) and activated diacylglycerol-dependent protein kinase C (PKC) mediate increased collagen formation. Our study examined collagen formation by MCs exposed to HG for 8 weeks. Exposure to HG in overnight culture resulted in the activation of all PKC isoforms. In contrast, 8-week exposure to HG resulted in the persistent activation of PKC-delta, did not change PKC-alpha or -beta activity, and decreased PKC-epsilon activity while increasing collagen I and IV gene and protein expression. Collagen IV accumulation was reversed by specific PKC-delta inhibition. Collagen IV gene expression was completely normalized by TGF-beta neutralization; however, this was associated with plasminogen activator inhibitor-1 (PAI-1) overexpression and a modest reduction in collagen protein. Our studies suggest that prolonged exposure to HG results in PKC-delta-driven collagen accumulation by MCs mediated by PAI-1 but independent of TGF-beta.
Other than stimulation of cell contractility, little is known about the potential metabolic effects induced by sulfonylureas, independently of insulin action. Previous studies from our laboratory demonstrated complete abrogation of glomerulosclerosis in an experimental model of type 1 diabetes chronically (9 mo) treated with low-dose sulfonylureas (Biederman JI, Vera E, Pankhaniya R, Hassett C, Giannico G, Yee J, Cortes P. Kidney Int 67: 554-565, 2005). Therefore, the effects of glibenclamide (Glib) on net collagen I, collagen IV, and fibronectin medium net secretion and cell layer collagen I deposition were investigated in mesangial cells continuously exposed to 25 mM glucose for 8 wk and treated with predetermined increasing concentrations of Glib for the same period. Clinically relevant concentrations (0.01 microM) of Glib fully suppressed the high glucose-enhanced accumulation of collagen I, collagen IV, and fibronectin in the medium and inhibited collagen I deposition in the cell layer. These effects occurred while transforming growth factor (TGF)-beta1 medium concentration remained elevated and glucose uptake was increased to levels above those in 25 mM glucose-incubated cultures. The decreased collagen I accumulation occurred simultaneously with enhanced collagen I mRNA expression in concert with marked suppression of plasminogen inhibitor type-1 (PAI-1) mRNA and protein expression. This strongly suggests an accelerated matrix turnover favoring breakdown. Glib-induced effects demonstrated a biphasic pattern, being absent or reversed in cells treated with higher Glib concentrations (0.1 or 1 microM). Therefore, chronic Glib treatment at low concentrations markedly diminishes the high glucose-induced enhanced accumulation of extracellular matrix components by suppression of steady-state PAI-1 transcriptional activity. These results and those previously reported in vivo suggest that long-term Glib treatment may prevent glomerulosclerosis in insulin-deficient diabetes.
Long-term treatment with sulfonylureas completely prevents glomerular injury in insulin-deficient diabetes in rats. However, this protective effect is not demonstrable in an insulin-resistant model of the disease. We postulate that mesangial alpha-endosulfine up-regulation in the hyperglycemic milieu of insulin-deficient diabetes may retard glomerular extracellular matrix formation and mesangial expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.