When an assembly of two or more molecules absorbs a photon to form a singlet exciton, and the energetics and intermolecular interactions are favourable, the singlet exciton can rapidly and spontaneously produce two triplet excitons by singlet fission. To understand this process is important because it may prove to be technologically significant for enhancing solar-cell performance. Theory strongly suggests that charge-transfer states are involved in singlet fission, but their role has remained an intriguing puzzle and, up until now, no molecular system has provided clear evidence for such a state. Here we describe a terrylenediimide dimer that forms a charge-transfer state in a few picoseconds in polar solvents, and undergoes equally rapid, high-yield singlet fission in nonpolar solvents. These results show that adjusting the charge-transfer-state energy relative to those of the exciton states can serve to either inhibit or promote singlet fission.
Singlet fission (SF) in polycrystalline thin films of four 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) chromophores with methyl (Me), n-hexyl (C6), triethylene glycol (TEG), and 2-ethylhexyl (EH) substituents at the 2,5-positions is found to involve an intermediate excimer-like state. The four different substituents yield four distinct intermolecular packing geometries, resulting in variable intermolecular charge transfer (CT) interactions in the solid. SF from the excimer state of Me, C6, TEG, and EH takes place in τSF = 22, 336, 195, and 1200 ps, respectively, to give triplet yields of 200%, 110%, 110%, and 70%, respectively. The transient spectra of the excimer-like state and its energetic proximity to the lowest excited singlet state in these derivatives suggests that this state may be the multiexciton (1)(T1T1) state that precedes formation of the uncorrelated triplet excitons. The excimer decay rates correlate well with the SF efficiencies and the degree of intermolecular donor-acceptor interactions resulting from π-stacking of the thiophene donor of one molecule with the DPP core acceptor in another molecule as observed in the crystal structures. Such interactions are found to also increase with the SF coupling energies, as calculated for each derivative. These structural and spectroscopic studies afford a better understanding of the electronic interactions that enhance SF in chromophores having strong intra- and intermolecular CT character.
Singlet exciton fission (SF) in organic chromophore assemblies results in the conversion of one singlet exciton (S) into two triplet excitons (T), provided that the overall process is exoergic, i.e., E(S) > 2E(T). We report on SF in thin polycrystalline films of two terrylene-3,4:11,12-bis(dicarboximide) (TDI) derivatives 1 and 2, which crystallize into two distinct π-stacked structures. Femtosecond transient absorption spectroscopy (fsTA) reveals a charge-transfer state preceding a 190% T yield in films of 1, where the π-stacked TDI molecules are rotated by 23° along an axis perpendicular to their π systems. In contrast, when the TDI molecules are slip-stacked along their N-N axes in films of 2, fsTA shows excimer formation, followed by a 50% T yield.
Singlet
fission (SF) is being explored as a way to improve the
efficiency of organic photovoltaics beyond the Shockley-Queisser limit;
however, many aspects of the SF mechanism remain unresolved. The generally
accepted mechanisms provide simplified models of SF that equivocate
over whether a charge transfer (CT) state is involved in SF. A one-step
superexchange model allows the CT state to act as a virtual state,
reducing the effect of large Gibbs free energy values from SF rate
calculations. Also, extending superexchange to an excimer-mediated
process allows for further refinement of the triplet formation model.
Application of the superexchange and excimer-mediated models to a
variety of rylene and diketopyrrolopyrrole derivatives provides new
insights into the role of the CT and excimer states, providing a semiquantitative
description of SF that is dictated by the CT state energy.
Nanoparticles (NPs) of the singlet fission chromophore 3,6bis(5-phenylthiophen-2-yl)pyrrolo [3,4-c]pyrrole-1,4(2H,5H)-dione (PhTDPP) having average hydrodynamic diameters of 63−193 nm were prepared by rapidly injecting variable concentrations of PhTDPP solutions in tetrahydrofuran into water. These PhTDPP NPs are stable over months in water and exhibit fluorescence quantum yields ≪1%. Femtosecond transient absorption spectros-copy shows that singlet fission is more rapid in smaller NPs, likely reflecting their greater surface area-to-volume ratio and consequent exposure of more molecules to the high dielectric aqueous environment. These observations suggest that charge transfer states, whose energy is sensitive to the dielectric constant of the surrounding medium, serve as virtual intermediates in PhTDPP NP singlet fission. However, the lifetime of the triplet excitons produced by singlet fission is longest in the larger NPs having greater long-range order, which allows the triplet excitons to diff use further from one another thus slowing triplet−triplet annihilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.