We develop a patient-specific dynamical system model from the time series data of the cancer patient’s metabolic panel taken during the period of cancer treatment and recovery. The model consists of a pair of stacked long short-term memory (LSTM) recurrent neural networks and a fully connected neural network in each unit. It is intended to be used by physicians to trace back and look forward at the patient’s metabolic indices, to identify potential adverse events, and to make short-term predictions. When the model is used in making short-term predictions, the relative error in every index is less than 10% in the L∞ norm and less than 6.3% in the L1 norm in the validation process. Once a master model is built, the patient-specific model can be calibrated through transfer learning. As an example, we obtain patient-specific models for four more cancer patients through transfer learning, which all exhibit reduced training time and a comparable level of accuracy. This study demonstrates that this modeling approach is reliable and can deliver clinically acceptable physiological models for tracking and forecasting patients’ metabolic indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.