In this paper, we employ the so-called semi-bent functions to achieve significant improvements over currently known methods regarding the number of orthogonal sequences per cell that can be assigned to a regular tessellation of hexagonal cells, typical for certain code-division multiple-access (CDMA) systems. Our initial design method generates a large family of orthogonal sets of sequences derived from vectorial semibent functions. A modification of the original approach is proposed to avoid a hard combinatorial problem of allocating several such orthogonal sets to a single cell of a regular hexagonal network, while preserving the orthogonality to adjacent cells. This modification increases the number of users per cell by starting from shorter codewords and then extending the length of these codewords to the desired length. The specification and assignment of these orthogonal sets to a regular tessellation of hexagonal cells have been solved regardless of the parity and size of m (where 2 m is the length of the codewords). In particular, when the re-use distance is D = 4 the number of users per cell is 2 m−2 for almost all m, which is twice as many as can be obtained by the best known methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.