Chronic overnutrition and obesity induces low-grade inflammation throughout the body. Termed "meta-inflammation," this chronic state of inflammation is mediated by macrophages located within the colon, liver, muscle, and adipose tissue. A sentinel orchestrator of immune activity and homeostasis, macrophages adopt variable states of activation as a function of time and environmental cues. Meta-inflammation phenotypically skews these polarization states and has been linked to numerous metabolic disorders. The past decade has revealed several key regulators of macrophage polarization, including the signal transducer and activator of transcription family, the peroxisome proliferator-activated receptor gamma, the CCAAT-enhancer-binding proteins (C/EBP) family, and the interferon regulatory factors. Recent studies have also suggested that microRNAs and long noncoding RNA influence macrophage polarization. The pathogenic alteration of macrophage polarization in meta-inflammation is regulated by both extracellular and intracellular cues, resulting in distinct secretome profiles. Meta-inflammation-altered macrophage polarization has been linked to insulin insensitivity, atherosclerosis, inflammatory bowel disease, cancer, and autoimmunity. Thus, further mechanistic exploration into the skewing of macrophage polarization promises to have profound impacts on improving global health.
The effect of carrot juice fermented with Lactobacillus plantarum NCU116 on high-fat and low-dose streptozotocin (STZ)-induced type 2 diabetes in rats was studied. Rats were randomly divided into five groups: non-diabetes mellitus (NDM), untreated diabetes mellitus (DM), DM plus L. plantarum NCU116 (NCU), DM plus fermented carrot juice with L. plantarum NCU116 (FCJ), and DM plus non-fermented carrot juice (NFCJ). Treatments of NCU and FCJ for 5 weeks were found to favorably regulate blood glucose, hormones, and lipid metabolism in the diabetic rats, accompanied by an increase in short-chain fatty acid (SCFA) in the colon. In addition, NCU and FCJ had restored the antioxidant capacity and morphology of the pancreas and kidney and upregulated mRNA of low-density lipoprotein (LDL) receptor, cholesterol 7α-hydroxylase (CYP7A1), glucose transporter-4 (GLUT-4), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ). These results have for the first time demonstrated that L. plantarum NCU116 and the fermented carrot juice had the potential ability to ameliorate type 2 diabetes in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.