This paper is a case study of a well intervention performed by PETRONAS Carigali Sdn Bhd (PCSB) in Sarawak region to investigate and rectify a breach in well integrity. The review and discussion demonstrate that the intervention not only ensured compliance with existing well bore risk management guidelines but also reduced operational rig cost and enabled increase in production. The paper identifies the aspects of what appears on first view to be a straightforward well integrity diagnostic process, but which on deeper evaluation exposes the wider and acute impact of the outcomes of such a diagnosis. The nature of the diagnostic technique is examined, and the interrelated impact on PCSB HSE requirements, platform operating efficiency, and field-wide production. The well intervention and the subsequent targeted rectification made possible by the precise nature of the diagnosis, enabled PCSB to bring this well back online and restore its gas production. This gas production is vital for several of the gas lifted wells in the field. Restoration enabled PCSB to increase field production significantly. The study concludes that accurate, reliable and rapid integrity diagnostics should not be evaluated as only relevant as a means of HSE management but also a means of cost management and in sustaining or increasing overall production.
The B Field is located in the South China Sea, about 45 KM offshore Sarawak, Malaysia, in a water depth approximately 230 ft. Its structure is generally regarded as a gentle rollover anticline with collapsed crest resulting from growth faulting. The reservoirs were deposited in a coastal to shallow marine with some channels observed. Multiple stacked reservoirs consist of a series of very thick stacked alternating sandstone and minor shale layers with differing reservoir properties. The shallow zones are unconsolidated, and the wells were completed with internal gravel packs. Wells in B Field mostly were completed in multi-layered reservoirs as dual strings with SSDs and meant to produce as a commingled production. The well BX is located within B Field and designed as oil producer well with a conventional tubing jointedElectrical Submersible Pump (ESP) system which was installed back in 2008. Refer to figure 1, the initial completion schematic is 3-1/2″ single string that consist of the single production packer, gas lift mandrel, tubing retrievable Surface Controlled Subsurface Safety Valve (SCSSV) and ESP. The production packers equipped with the feed thru design to accommodate the ESP cable and the gas vent valve as part of the ESP completion design. The gas lift mandrel was installed in the completion string as a backup artificial lift method to receive the gas lift and orifice valve in the event of the conventional ESP failed. Hence the well still able to produce by introducing the gas thru the annulus to activate the gas lift valve. Eventually throughout the end of the the field life, the well would depend on the ESP system for the primary lifting method due to gas lift depth limitation and the gas supply. The conventional ESP failed after seven years of operation which is above the average ESP lifetime. The well last produced at a flow rate with 28 % water cut, however the well is not at the end of the field life. Based on the economical study with the right technology and cost efficient approach, the well still economicaly profitable. The Thru Tubing (TT) ESP technology is approached as cost effective solution compare to fully well workover. Despite a couple of operational challenges, for example, setting the cable hanger, maintaining downhole barrier requirement, the Thru Tubing Electrical Submersible Pump Cable Deployed (TTESP CD) and Cable Thru Insert Safety Valve (CT-ISV) was successfully installed. Several post-installation findings have uncovered some problems which are requiring some additional technical and operation improvement for future similar applications. This paper will highlight the deployment of the Cable Thru Insert Safety Valve (CT-ISV) that was successfully installed as pilot, which is the first application in the world, and also highlights the success, lesson learnt and improvement for future requirement for the CT-ISV application as one of the solution for retrofitting completion application without jeopardizing the well integrity. This achievement is collaboration between Company and service partner as the technology and deployment under the proprietary scope. Further technology application, the replication of this insert safety valve was conducted and successfully deployed on other three wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.