SUMMARYThis paper describes a method for designing sliding mode observers for detection and reconstruction of actuator and sensor faults, that is robust against system uncertainty. The method uses H 1 concepts to design the sliding motion so that an upper bound on the effect of the uncertainty on the reconstruction of the faults will be minimized. The design method is first applied to the case of actuator faults, and then by some appropriate filtering, the method is extended to the case of sensor faults. A VTOL aircraft example taken from the fault detection literature is used to demonstrate the method and its effectiveness.
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.
This paper proposes an on-line sliding mode control allocation scheme for fault tolerant control. The effectiveness level of the actuators is used by the control allocation scheme to redistribute the control signals to the remaining actuators when a fault or failure occurs. The paper provides an analysis of the sliding mode control allocation scheme and determines the nonlinear gain required to maintain sliding. The on-line sliding mode control allocation scheme shows that faults and even certain total actuator failures can be handled directly without reconfiguring the controller. The simulation results show good performance when tested on different fault and failure scenarios.
SUMMARYIn this paper, a higher-order sliding-mode observer is proposed to estimate exactly the observable states and asymptotically the unobservable ones in multi-input-multi-output nonlinear systems with unknown inputs and stable internal dynamics. In addition the unknown inputs can be identified asymptotically. Numerical examples illustrate the efficacy of the proposed observer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.