The transition of epithelial cells to a mesenchymal phenotype is of paramount relevance for embryonic development and adult wound healing. During the past decade, the epithelial-mesenchymal transition (EMT) has been increasingly recognized to occur during the progression of various carcinomas such as hepatocellular carcinoma (HCC). Here, we focus on EMT in both experimental liver models and human HCC, emphasizing the underlying molecular mechanisms which show partial recurrence of embryonic programs such as TGF-beta and Wnt/ beta-catenin signaling, including collaboration with hepatitis viruses. We further discuss the differentiation repertoire of malignant hepatocytes with respect to the potential acquisition of stemness, and the involvement of the mesenchymal to epithelial transition, the reversal of EMT, in cancer dissemination and metastatic colonization. The strong evidence for EMT in HCC patients demands novel strategies in pathological assessments and therapeutic concepts to efficiently combat HCC progression.
Focal segmental glomerulosclerosis (FSGS) is a frequent and severe glomerular disease characterized by destabilization of podocyte foot processes. We report that transgenic expression of the microRNA miR-193a in mice rapidly induces FSGS with extensive podocyte foot process effacement. Mechanistically, miR-193a inhibits the expression of the Wilms' tumor protein (WT1), a transcription factor and master regulator of podocyte differentiation and homeostasis. Decreased expression levels of WT1 lead to downregulation of its target genes PODXL (podocalyxin) and NPHS1 (nephrin), as well as several other genes crucial for the architecture of podocytes, initiating a catastrophic collapse of the entire podocyte-stabilizing system. We found upregulation of miR-193a in isolated glomeruli from individuals with FSGS compared to normal kidneys or individuals with other glomerular diseases. Thus, upregulation of miR-193a provides a new pathogenic mechanism for FSGS and is a potential therapeutic target.
SummaryBackgroundPatients with refractory or relapsed haematological malignancies have few treatment options and short survival times. Identification of effective therapies with genomic-based precision medicine is hampered by intratumour heterogeneity and incomplete understanding of the contribution of various mutations within specific cancer phenotypes. Ex-vivo drug-response profiling in patient biopsies might aid effective treatment identification; however, proof of its clinical utility is limited.MethodsWe investigated the feasibility and clinical impact of multiparametric, single-cell, drug-response profiling in patient biopsies by immunofluorescence, automated microscopy, and image analysis, an approach we call pharmacoscopy. First, the ability of pharmacoscopy to separate responders from non-responders was evaluated retrospectively for a cohort of 20 newly diagnosed and previously untreated patients with acute myeloid leukaemia. Next, 48 patients with aggressive haematological malignancies were prospectively evaluated for pharmacoscopy-guided treatment, of whom 17 could receive the treatment. The primary endpoint was progression-free survival in pharmacoscopy-treated patients, as compared with their own progression-free survival for the most recent regimen on which they had progressive disease. This trial is ongoing and registered with ClinicalTrials.gov, number NCT03096821.FindingsPharmacoscopy retrospectively predicted the clinical response of 20 acute myeloid leukaemia patients to initial therapy with 88·1% accuracy. In this interim analysis, 15 (88%) of 17 patients receiving pharmacoscopy-guided treatment had an overall response compared with four (24%) of 17 patients with their most recent regimen (odds ratio 24·38 [95% CI 3·99–125·4], p=0·0013). 12 (71%) of 17 patients had a progression-free survival ratio of 1·3 or higher, and median progression-free survival increased by four times, from 5·7 (95% CI 4·1–12·1) weeks to 22·6 (7·4–34·0) weeks (hazard ratio 3·14 [95% CI 1·37–7·22], p=0·0075).InterpretationRoutine clinical integration of pharmacoscopy for treatment selection is technically feasible, and led to improved treatment of patients with aggressive refractory haematological malignancies in an initial patient cohort, warranting further investigation.FundingAustrian Academy of Sciences; European Research Council; Austrian Science Fund; Austrian Federal Ministry of Science, Research and Economy; National Foundation for Research, Technology and Development; Anniversary Fund of the Austrian National Bank; MPN Research Foundation; European Molecular Biology Organization; and Swiss National Science Foundation.
The V600E mutation of the B-type Raf kinase (BRAF) gene is a common event in papillary thyroid carcinoma (PTC) and seems to play a key role in the development and progression of this disease. We evaluated the expression of the mutated BRAF V600E protein in 144 cases of PTC using a novel mutation-specific antibody. Seventy-six PTCs (52.8%) showed unequivocal diffuse cytoplasmic expression of the mutated BRAF protein, and the T1799A point mutation was confirmed by sequencing analysis in selected cases. No statistical difference in V600E BRAF protein expression was seen between microcarcinomas and macrocarcinomas. Further, no significant correlation of V600E expression with clinicopathologic parameters of aggressiveness such as lymph node metastasis, peritumoral infiltration, or perithyroidal infiltration was found. BRAF V600E protein expression was significantly more common in tumors with tall cell or oncocytic features but was less common in tumors with follicular growth pattern. Diffuse sclerosing, solid and follicular variants did not show the mutated BRAF protein. Immunohistochemical detection of the mutated V600E BRAF protein in PTC may facilitate mutational analysis in the clinical setting. Our data show that the expression of the mutated BRAF V600 protein and thus the corresponding BRAF mutation seems not to be per se a marker of aggressiveness but is already seen in clinically indolent microcarcinomas. Nevertheless, the investigation of BRAF V600E protein expression might be of clinical interest especially in therapy-resistant disease, as new therapeutics inhibiting the mutated protein are clinically available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.