Increasing concern over the presence of microcystins (cyanobacterial/blue-green algal hepatotoxins) in water supplies has emphasized the need for a suitable analytical method. As many microcystins are known to exist, a method was developed that permits the determination of numerous variants by a single procedure. The method involves filtration to separate cyanobacterial cells from water, allowing intracellular and extracellular toxin levels to be assessed. The cellular components of the samples are extracted repeatedly in methanol, which was found to be the most versatile solvent tested for the extraction of microcystins. The efficiency of this extraction procedure was found to be independent of cell biomass. The filtered water was subjected to trace enrichment using a C18 solid-phase extraction cartridge, followed by identification and determination by photodiode-array high-performance liquid chromatography. The procedure was assessed using four water samples (two raw and two treated) spiked with a mixture of five microcystins and the cyanobacterial hepatotoxin nodularin. Recoveries of all but one microcystin were found to be good when spiked with concentrations as low as 250 ng l-1. The linearity and precision of the experimental procedure were assessed for five microcystins and nodularin. The proposed method permits rapid sample processing and determination of several microcystins.
Summary
Biodiversity is declining world‐wide with detrimental effects on ecosystems. However, we lack a quantitative understanding of the shape of the relationship between microbial biodiversity and ecosystem function (BEF). This limits our understanding of how microbial diversity depletion can impact key functions for human well‐being, including pollutant detoxification.
Three independent microcosm experiments were conducted to evaluate the direction (i.e. positive, negative or null) and the shape of the relationships between bacterial diversity and both broad (i.e. microbial respiration) and specialized (i.e. toxin degradation) functions in five Australian and two UK freshwater ecosystems using next‐generation sequencing platforms.
Reduced bacterial diversity, even after accounting for biomass, caused a decrease in broad (i.e. cumulative microbial respiration) and specialized (biodegradation of two important toxins) functions in all cases. Unlike the positive but decelerating BEF relationship observed most frequently in plants and animals, most evaluated functional measurements were related to bacterial diversity in a non‐redundant fashion (e.g. exponentially and/or linearly).
Synthesis. Our results suggest that there is a lack of functional redundancy in the relationship between bacterial diversity and ecosystem functioning; thus, the consequences of declining microbial diversity on ecosystem functioning and human welfare have likely been considerably underestimated.
Of 31 freshwater bacterial isolates screened using the Biolog MT2 assay to determine their metabolism of the microcystin LR, 10 were positive. Phylogenetic analysis (16S rRNA) identified them as Arthrobacter spp., Brevibacterium sp., and Rhodococcus sp. This is the first report of microcystin degraders that do not belong to the Proteobacteria.
Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.