Acute and chronic stresses are implicated in cardiovascular diseases including coronary artery disease. The present study was designed to examine the direct effects of the stress hormone cortisol on nitric oxide (NO) release and endothelial NO synthase (eNOS) expression in cultured bovine coronary artery endothelial cells (BCAEC). Nitrate, nitrite, and NO (NO(x)) were measured by the chemiluminescence method. At 24 h after treatment, cortisol (1 nM-10 microM) produced a dose-dependent decrease in NO(x) release, which was attenuated in the presence of the 11beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone (3 microM). In accordance, eNOS protein levels were significantly decreased by cortisol in a dose-dependent manner. Cortisol pretreatment significantly increased the rate of eNOS protein degradation in the presence of cycloheximide. In addition, cortisol pretreatment decreased ATP-induced intracellular Ca(2+) elevation and NO(x) release in BCAEC. The presence of glucocorticoid receptors in BCAEC was demonstrated by Western blot. The results suggest that cortisol, through activation of glucocorticoid receptors, suppresses NO(x) release in BCAEC by downregulating eNOS proteins and inhibiting intracellular Ca(2+) mobilization. Decreased NO(x) is likely to result in an increase in contraction of coronary arteries, leading to a decrease in coronary blood flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.