SummaryBacterial attachment to solid matrices depends on adhesive molecules present on the cell surface. Here we establish a positive correlation between peptidoglycan (PG) breaks, rather than particular molecules, and biofilm-forming capacity in the Grampositive bacterium Lactococcus lactis . The L. lactis acmA strain, which is defective in PG hydrolase, adhered less efficiently than the wild-type (wt) strain to different solid surfaces and was unable to form biofilms. These phenotypes were abolished by addition of lysozyme, a PG hydrolytic enzyme. Thus, the presence of PG breaks introduced by PG hydrolase, and not the AcmA protein itself, appears to be responsible for biofilm formation. Two different genetic screens confirmed the importance of PG breaks in L. lactis biofilm formation. Using the chainforming ability of the acmA strain as a phenotypic indicator of PG integrity, we selected for insertional mutants generating short chains. Five independent mutants were all mapped to ponA , which encodes the PG synthesis enzyme PBP1A. Double acmA ponA mutants displayed increased adhesion and biofilmforming capacity. Direct selection for strains with increased biofilm-forming capacity resulted in the isolation of another five mutations in ponA. Based on these results, we conclude that PG breaks are important for both adhesion and biofilm formation in L. lactis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.